Pseudoprime numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8529   Accepted: 3577

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes
思路:问p是不是伪素数。伪素数条件:①p不是素数。② ap = a (mod p)。
#include <iostream>
using namespace std;
typedef unsigned long long ull;
ull a,p;
bool testPrime(ull x)
{
for(ull i=;i*i<=x;i++)
{
if(x%i==)
{
return false;
}
}
return true;
}
ull mpow(ull x,ull n,ull mod)
{
ull res=;
while(n>)
{
if(n&)
{
res=(res*x)%mod;
}
x=(x*x)%mod;
n>>=;
}
return res;
}
int main()
{
while(cin>>p>>a)
{
if(a==&&p==) break;
if(testPrime(p))
{
cout<<"no"<<endl;
}
else
{
if(mpow(a,p,p)==a%p)
{
cout<<"yes"<<endl;
}
else
{
cout<<"no"<<endl;
}
}
}
return ;
}
 

POJ3641(快速幂)的更多相关文章

  1. POJ3641 (快速幂) 判断a^p = a (mod p)是否成立

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  2. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  3. 【快速幂】POJ3641 - Pseudoprime numbers

    输入a和p.如果p不是素数,则若满足ap = a (mod p)输出yes,不满足或者p为素数输出no.最简单的快速幂,啥也不说了. #include<iostream> #include ...

  4. 《挑战程序设计竞赛》2.6 数学问题-快速幂运算 POJ1995

    POJ3641 此题应归类为素数. POJ1995 http://poj.org/problem?id=1995 题意 求(A1^B1+A2^B2+ - +AH^BH)mod M. 思路 标准快速幂运 ...

  5. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  6. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  7. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  8. Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...

  9. GDUFE-OJ 1203x的y次方的最后三位数 快速幂

    嘿嘿今天学了快速幂也~~ Problem Description: 求x的y次方的最后三位数 . Input: 一个两位数x和一个两位数y. Output: 输出x的y次方的后三位数. Sample ...

随机推荐

  1. 【codevs1907】方格取数3(最大流最小割定理)

    网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...

  2. python 操作mongoDB数据库

    网上关于python 操作mongoDB的相关文章相对不是很多,并且质量也不是很高!下面给出一个完整的 增删改查示例程序! #!/usr/bin/python # -*- coding: utf-8 ...

  3. Spring初学之spring的事务管理xml

    所有的java类都是用的上一篇文章:Spring初学之spring的事务管理 不同的是,这时xml配置事务,所以就要把java类中的那些关于spring的注解都删掉,然后在xml中配置,Applica ...

  4. codevs1907 方格取数 3

    «问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...

  5. ANT+JMETER集成1(生成报告)

    配置build.xml文件时,网上找了各种版本的代码都会报错, 终于找到个可以生成报告的build源码了 链接: http://www.cnblogs.com/hanxiaomin/p/6731810 ...

  6. Python之单例模式总结

    一.单例模式 a.单例模式分为四种:文件,类,基于__new__方法实现单例模式,基于metaclass方式实现 b.类实现如下: class Sigletion(objects): import t ...

  7. 本地的html服务

    本地的调试的时候, 我们服务器返回的cookie就会变的失效,因为你的本地服务器的域名不太对.

  8. Eclipse里面新建servlet 是否需要配置web.xml

    在新建的时候可选时候映射,如果选择了映射,那么就会在servle开头的地方有一行@servlet(""),这就完成了映射.注释掉这行就需要在web.xml中设置了

  9. python argpase模块简单使用

    python2.7 手册地址:https://docs.python.org/2/howto/argparse.html#id1 实现效果:脚本程序可以带参数 python arg.py -h 一.位 ...

  10. 【codesmith】 初次试用(未发布)

      一直都有听过codesmith,一个很好用的软件,减少大量代码的输入,比如你生成一个list,并添加5个项. ArrayList list1=new ArrayList(); list1.Add( ...