题面

虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下。经过多年的研究,科学家对这座金字塔的内部结构已经有所了解。首先,金字塔由若干房间组成,房间之间连有通道。如果把房间看作节点,通道看作边的话,整个金字塔呈现一个有根树结构,节点的子树之间有序,金字塔有唯一的一个入口通向树根。并且,每个房间的墙壁都涂有若干种颜色的一种。

探险队员打算进一步了解金字塔的结构,为此,他们使用了一种特殊设计的机器人。这种机器人会从入口进入金字塔,之后对金字塔进行深度优先遍历。机器人每进入一个房间(无论是第一次进入还是返回),都会记录这个房间的颜色。最后,机器人会从入口退出金字塔。

显然,机器人会访问每个房间至少一次,并且穿越每条通道恰好两次(两个方向各一次), 然后,机器人会得到一个颜色序列。但是,探险队员发现这个颜色序列并不能唯一确定金字塔的结构。现在他们想请你帮助他们计算,对于一个给定的颜色序列,有多少种可能的结构会得到这个序列。因为结果可能会非常大,你只需要输出答案对 \(10^9\) 取模之后的值。

输入格式

输入文件包含一行,一个字符串S,长度不超过300,表示机器人得到的颜色序列。

输出格式

输出一个整数表示答案。

样例输入

ABABABA

样例输出

5

\(\text{Solution:}\)

容易发现,从串中提取出一段首尾相同的区间,就又成了一个可以递归的子问题。

\(F[l,r]\) 表示 \(l\) 到 \(r\) 这一段的答案。

先考虑特殊情况:

1.\(l=r\) 则 \(F[l, r] = 1\) ;

2.\(s[l] \ne s[r]\) 则 \(F[l, r]=0\);

对于 \(s[l] = s[r]\) 的,考虑从它的两个子区间 \([l+1,k],[k+1,r-1]\) 转移,但是发现两个子区间合并的子树个数是不确定的,这样会产生重复计数,如:"\(A|BAB|A|BA\)" 与 "\(A|B|A|BAB|A\)" 这两个的 "\(BAB\)" 都可以分为 "\(B|A|B\)" 于是方案 "\(A|B|A|B|A|B|A\)" 就被算了两次。

所以我们需要枚举第一颗子树所代表的区间 \([l+1,k]\) , 那么 \([k+1,r]\) 就是剩余部分(包括当前根,可能有多棵子树),

这样就不会算重了。

请仔细思考为什么 \([l+1, k]\) 与 \([k+1,r]\) 合并不会算重,而 \([l+1,k]\) 与 \([k+1,r-1]\) 会算重。(在纸上画一画就想通了)

这题告诉我们:

对于方案计数类的 \(dp\), 通常一个状态的各个决策之间满足"加法原理",而每个决策划分的几个子状态之间满足"乘法原理"

#include <iostream>
#include <cstring> using namespace std; const int N = 320, P = 1e9; char str[N];
int n, m;
long long F[N][N]; long long solve(int l, int r)
{
if (l > r) return 0;
if (l == r) return 1;
if (~F[l][r]) return F[l][r];
if (str[l] != str[r]) return 0;
F[l][r] = 0;
for (int k = l + 1; k < r; ++ k)
F[l][r] = (F[l][r] + solve(l + 1, k) * solve(k+1, r) % P) % P;
return F[l][r];
} int main()
{
memset(F, -1, sizeof F);
cin >> (str + 1);
cout << solve(1, strlen(str + 1)) << endl;
}

[CH5302]金字塔的更多相关文章

  1. CH5302 金字塔【区间DP】

    5302 金字塔 0x50「动态规划」例题 描述 虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下.经过多年的研究,科学家对这座金字塔的内部结构已经有所了解.首先,金字塔由若干房间 ...

  2. $CH5302$ 金字塔 区间$DP$/计数类$DP$

    CH Sol f[l][r]表示l到r这段区间对应的金字塔结构种数 发现是f[l][r]是可以由比它小的区间推出来的 比如已知f[l+1][k],f[k+1][r],不难想到f[l][r]+=f[l+ ...

  3. 常规DP专题练习

    POJ2279 Mr. Young's Picture Permutations 题意 Language:Default Mr. Young's Picture Permutations Time L ...

  4. DP百题练(二)

    目录 DP百题练(二) 区间 DP NOI1995 石子合并 IOI1998 Polygon CH5302 金字塔 USACO06FEB Treats for the Cows G/S LG1043 ...

  5. 【CH5302】金字塔 区间DP

    题目大意:给定一棵树,树上点有标记,给定一棵树的\(dfs\)序标记序列,求有多少种可能的子树形态.(子树之间有序) 这是一道区间计数类DP,涉及到树的\(dfs\)序. 这道题区间的划分点 \(k\ ...

  6. Atitit.软件开发的三层结构isv金字塔模型

    Atitit.软件开发的三层结构isv金字塔模型 第一层,Implements 层,着重与功能的实现.. 第二次,spec层,理论层,设计规范,接口,等.流程.方法论 顶层,val层,价值观层,原则, ...

  7. 在Excel中制作金字塔条形图

    使用场景:一项市场调查研究中,男性和女性.赞同和反对.满意和不满意的两方面的消费者,他们在某些项目上的指标分布特性一项产品组合决策中,乐观场景和悲观场景下各产品的获利情况一个产品试销活动中,不同门店渠 ...

  8. SIFT中的尺度空间和传统图像金字塔

    SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近 ...

  9. Atitit 图像金字塔原理与概率 attilax的理解总结qb23

    Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔  (  Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2 ...

随机推荐

  1. 【洛谷P3389】(模板)高斯消元

    对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元 ...

  2. HDU 1077 Catching Fish(用单位圆尽可能围住多的点)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1077 Catching Fish Time Limit: 10000/5000 MS (Java/Oth ...

  3. LeetCode10.正则表达式匹配 JavaScript

    给定一个字符串 (s) 和一个字符模式 (p).实现支持 '.' 和 '*' 的正则表达式匹配. '.' 匹配任意单个字符. '*' 匹配零个或多个前面的元素. 匹配应该覆盖整个字符串 (s) ,而不 ...

  4. SpringMvc获取上下文

    import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpSession; import org.spri ...

  5. 为什么IP检验和发现错误直接丢弃而不是要求源站重发

    纠错控制由上层(传输层)执行IP首部中的源站地址也可能出错,请错误的源地址重传数据报是 没有意义的

  6. jsp中java代码、jsp代码、js代码执行的顺序

    原理: jsp中的Java代码 -- 服务器端代码 js代码 -- 客户端代码 java是在服务器端运行的代码,jsp在服务器的servlet里运行,而JavaScript和html都是在浏览器端运行 ...

  7. Oracle 行转列两种方法

    1.新建一个名为TEST表 create table TEST( STUDENT varchar2(20), COURSE varchar2(20), SCORE number); INSERT IN ...

  8. iOS 直播类APP开发流程解析

    1 . 音视频处理的一般流程: 数据采集→数据编码→数据传输(流媒体服务器) →解码数据→播放显示1.数据采集:摄像机及拾音器收集视频及音频数据,此时得到的为原始数据涉及技术或协议:摄像机:CCD.C ...

  9. 《瞿葩的数字游戏》T3-三角圣地(Lucas)

    题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1~N.1~N可以交换位置.之后的每 ...

  10. LVS、keepalived原理及配置

    使用LVS实现负载均衡原理及安装配置详解 ​ 负载均衡集群是 load balance 集群的简写,翻译成中文就是负载均衡集群.常用的负载均衡开源软件有nginx.lvs.haproxy,商业的硬件负 ...