[CH5302]金字塔
题面
虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下。经过多年的研究,科学家对这座金字塔的内部结构已经有所了解。首先,金字塔由若干房间组成,房间之间连有通道。如果把房间看作节点,通道看作边的话,整个金字塔呈现一个有根树结构,节点的子树之间有序,金字塔有唯一的一个入口通向树根。并且,每个房间的墙壁都涂有若干种颜色的一种。
探险队员打算进一步了解金字塔的结构,为此,他们使用了一种特殊设计的机器人。这种机器人会从入口进入金字塔,之后对金字塔进行深度优先遍历。机器人每进入一个房间(无论是第一次进入还是返回),都会记录这个房间的颜色。最后,机器人会从入口退出金字塔。
显然,机器人会访问每个房间至少一次,并且穿越每条通道恰好两次(两个方向各一次), 然后,机器人会得到一个颜色序列。但是,探险队员发现这个颜色序列并不能唯一确定金字塔的结构。现在他们想请你帮助他们计算,对于一个给定的颜色序列,有多少种可能的结构会得到这个序列。因为结果可能会非常大,你只需要输出答案对 \(10^9\) 取模之后的值。
输入格式
输入文件包含一行,一个字符串S,长度不超过300,表示机器人得到的颜色序列。
输出格式
输出一个整数表示答案。
样例输入
ABABABA
样例输出
5
\(\text{Solution:}\)
容易发现,从串中提取出一段首尾相同的区间,就又成了一个可以递归的子问题。
\(F[l,r]\) 表示 \(l\) 到 \(r\) 这一段的答案。
先考虑特殊情况:
1.\(l=r\) 则 \(F[l, r] = 1\) ;
2.\(s[l] \ne s[r]\) 则 \(F[l, r]=0\);
对于 \(s[l] = s[r]\) 的,考虑从它的两个子区间 \([l+1,k],[k+1,r-1]\) 转移,但是发现两个子区间合并的子树个数是不确定的,这样会产生重复计数,如:"\(A|BAB|A|BA\)" 与 "\(A|B|A|BAB|A\)" 这两个的 "\(BAB\)" 都可以分为 "\(B|A|B\)" 于是方案 "\(A|B|A|B|A|B|A\)" 就被算了两次。
所以我们需要枚举第一颗子树所代表的区间 \([l+1,k]\) , 那么 \([k+1,r]\) 就是剩余部分(包括当前根,可能有多棵子树),
这样就不会算重了。
请仔细思考为什么 \([l+1, k]\) 与 \([k+1,r]\) 合并不会算重,而 \([l+1,k]\) 与 \([k+1,r-1]\) 会算重。(在纸上画一画就想通了)
这题告诉我们:
对于方案计数类的 \(dp\), 通常一个状态的各个决策之间满足"加法原理",而每个决策划分的几个子状态之间满足"乘法原理"
#include <iostream>
#include <cstring>
using namespace std;
const int N = 320, P = 1e9;
char str[N];
int n, m;
long long F[N][N];
long long solve(int l, int r)
{
if (l > r) return 0;
if (l == r) return 1;
if (~F[l][r]) return F[l][r];
if (str[l] != str[r]) return 0;
F[l][r] = 0;
for (int k = l + 1; k < r; ++ k)
F[l][r] = (F[l][r] + solve(l + 1, k) * solve(k+1, r) % P) % P;
return F[l][r];
}
int main()
{
memset(F, -1, sizeof F);
cin >> (str + 1);
cout << solve(1, strlen(str + 1)) << endl;
}
[CH5302]金字塔的更多相关文章
- CH5302 金字塔【区间DP】
5302 金字塔 0x50「动态规划」例题 描述 虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下.经过多年的研究,科学家对这座金字塔的内部结构已经有所了解.首先,金字塔由若干房间 ...
- $CH5302$ 金字塔 区间$DP$/计数类$DP$
CH Sol f[l][r]表示l到r这段区间对应的金字塔结构种数 发现是f[l][r]是可以由比它小的区间推出来的 比如已知f[l+1][k],f[k+1][r],不难想到f[l][r]+=f[l+ ...
- 常规DP专题练习
POJ2279 Mr. Young's Picture Permutations 题意 Language:Default Mr. Young's Picture Permutations Time L ...
- DP百题练(二)
目录 DP百题练(二) 区间 DP NOI1995 石子合并 IOI1998 Polygon CH5302 金字塔 USACO06FEB Treats for the Cows G/S LG1043 ...
- 【CH5302】金字塔 区间DP
题目大意:给定一棵树,树上点有标记,给定一棵树的\(dfs\)序标记序列,求有多少种可能的子树形态.(子树之间有序) 这是一道区间计数类DP,涉及到树的\(dfs\)序. 这道题区间的划分点 \(k\ ...
- Atitit.软件开发的三层结构isv金字塔模型
Atitit.软件开发的三层结构isv金字塔模型 第一层,Implements 层,着重与功能的实现.. 第二次,spec层,理论层,设计规范,接口,等.流程.方法论 顶层,val层,价值观层,原则, ...
- 在Excel中制作金字塔条形图
使用场景:一项市场调查研究中,男性和女性.赞同和反对.满意和不满意的两方面的消费者,他们在某些项目上的指标分布特性一项产品组合决策中,乐观场景和悲观场景下各产品的获利情况一个产品试销活动中,不同门店渠 ...
- SIFT中的尺度空间和传统图像金字塔
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近 ...
- Atitit 图像金字塔原理与概率 attilax的理解总结qb23
Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔 ( Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2 ...
随机推荐
- 【洛谷P3389】(模板)高斯消元
对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元 ...
- HDU 1077 Catching Fish(用单位圆尽可能围住多的点)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1077 Catching Fish Time Limit: 10000/5000 MS (Java/Oth ...
- LeetCode10.正则表达式匹配 JavaScript
给定一个字符串 (s) 和一个字符模式 (p).实现支持 '.' 和 '*' 的正则表达式匹配. '.' 匹配任意单个字符. '*' 匹配零个或多个前面的元素. 匹配应该覆盖整个字符串 (s) ,而不 ...
- SpringMvc获取上下文
import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpSession; import org.spri ...
- 为什么IP检验和发现错误直接丢弃而不是要求源站重发
纠错控制由上层(传输层)执行IP首部中的源站地址也可能出错,请错误的源地址重传数据报是 没有意义的
- jsp中java代码、jsp代码、js代码执行的顺序
原理: jsp中的Java代码 -- 服务器端代码 js代码 -- 客户端代码 java是在服务器端运行的代码,jsp在服务器的servlet里运行,而JavaScript和html都是在浏览器端运行 ...
- Oracle 行转列两种方法
1.新建一个名为TEST表 create table TEST( STUDENT varchar2(20), COURSE varchar2(20), SCORE number); INSERT IN ...
- iOS 直播类APP开发流程解析
1 . 音视频处理的一般流程: 数据采集→数据编码→数据传输(流媒体服务器) →解码数据→播放显示1.数据采集:摄像机及拾音器收集视频及音频数据,此时得到的为原始数据涉及技术或协议:摄像机:CCD.C ...
- 《瞿葩的数字游戏》T3-三角圣地(Lucas)
题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1~N.1~N可以交换位置.之后的每 ...
- LVS、keepalived原理及配置
使用LVS实现负载均衡原理及安装配置详解 负载均衡集群是 load balance 集群的简写,翻译成中文就是负载均衡集群.常用的负载均衡开源软件有nginx.lvs.haproxy,商业的硬件负 ...