2286: [Sdoi2011]消耗战

Time Limit: 20 Sec  Memory Limit: 512 MB

Submit: 4261  Solved: 1552

[Submit][Status][Discuss]

Description

在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。
侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到1号岛屿上)。不过侦查部门还发现了这台机器只能够使用m次,所以我们只需要把每次任务完成即可。

Input

第一行一个整数n,代表岛屿数量。

接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。

第n+1行,一个整数m,代表敌方机器能使用的次数。

接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。

Output

输出有m行,分别代表每次任务的最小代价。

Sample Input

10

1 5 13

1 9 6

2 1 19

2 4 8

2 3 91

5 6 8

7 5 4

7 8 31

10 7 9

3

2 10 6

4 5 7 8 3

3 9 4 6

Sample Output

12

32

22

HINT

对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1

我一定要吐槽一下,神™c <= 100000,假的吧= =

我INF开了10^9都不够和c比,调了一中午对别人代码从头对到尾就是找不出错= =

MMP

唉,还是自己弱,刚学虚树,对建树过程不太自信

先说说树形dp,我们设f[i]表示i节点封锁的最小开销【我们把每条向上的边直接看做该点的权值】

则f[i] = min(v[i],∑f[to])

我们知道封锁父亲效果一定不比封锁儿子差,那么每个点u的权值可以看做v[u] = min(v[u的祖先们])、

直接做肯定T,O(mn),题目甚至直接都没有m的上限,而k的上限提醒我们只处理每次涉及到的点

如何抽出一棵树中单独的一些点呢?这就是虚树了

虚树

虚树,用来处理一棵有很多节点的树,询问只涉及其中部分节点且剩余节点的值对答案没有影响
这个时候我们只需保证树的形态不变,也就是询问点的相互位置关系不变,抽出来建一棵新的树,就是虚树

如何建树?
我们将所有点按照dfn排序,模拟递归的做法,开一个栈,表示当前正在处理以栈顶为根的子树
当我们遇到节点u时
①若u与栈顶p的lca就是p,说明u一定在p的子树内,由于是按照dfn顺序,那么接下来的节点就会在u的子树里,u入栈
②若u与栈顶p的lca不是p,那么一定在p之上,那么p的子树内的建树已经完成,不会再有里边的节点,而将处理lca为根的子树,这时候逐一出栈并建边,直至lca可以入栈的位置,lca入栈,u入栈

或者可以这么想,我们维护的栈实际上就是从根出发的一条链,由于按照dfs序,所以这条链按照一个方向延伸,当不能延伸的时候,前方已经没有了新的节点,链往回缩,缩的同时就把这些点给连边了,当缩到一个位置往另一边又有可以延伸的节点时,链继续延伸,最后所有点都到达,链往回缩回根。至此,所有的边都建好了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define PP(a,b) printf("link %d -> %d\n",a,b)
using namespace std;
const int maxn = 250005,maxm = 510005;
const LL INF = 100000000000000000ll;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,K,h[maxn],ne = 0,fa[maxn][20],dfn[maxn],dep[maxn],cnt = 0;
int s[maxn],t[maxn];
LL mn[maxn],f[maxn];
struct EDGE{int to,nxt; LL w;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
inline void add(int u,int v){if (u != v) {ed[ne] = (EDGE){v,h[u],0}; h[u] = ne++;}}
void dfs(int u,int ff,int d){
fa[u][0] = ff; dfn[u] = ++cnt; dep[u] = ++d;
Redge(u) if (ed[k].to != ff){
mn[ed[k].to] = min(mn[u],ed[k].w);
dfs(ed[k].to,u,d);
}
}
void init(){REP(j,19) REP(i,n) fa[i][j] = fa[fa[i][j - 1]][j - 1];}
int lca(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
int d = dep[u] - dep[v];
for (int i = 0; (1 << i) <= d; i++)
if (d & (1 << i)) u = fa[u][i];
for (int i = 19; i >= 0; i--)
if (fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
if (u == v) return u;
return fa[u][0];
}
inline bool cmp(const int& a,const int& b){return dfn[a] < dfn[b];}
void rebuild(){
int top,tot = 0; s[top = 1] = 1; ne = 0;
sort(t + 1,t + 1 + K,cmp); t[++tot] = t[1];
for (int i = 2 ; i <= K; i++) if (lca(t[i],t[tot]) != t[tot]) t[++tot] = t[i];
for (int i = 1; i <= tot; i++){
int u = t[i],v = lca(u,s[top]);
while (true){
if (dep[v] >= dep[s[top - 1]]){
add(v,s[top--]); if (v != s[top]) s[++top] = v;
break;
}
add(s[top - 1],s[top]); top--;
}
if (s[top] != u) s[++top] = u;
}
while (--top) add(s[top],s[top + 1]);
}
void dp(int u){
f[u] = mn[u]; LL tmp = 0;
Redge(u) dp(ed[k].to),tmp += f[ed[k].to];
h[u] = -1;
if (tmp == 0) f[u] = mn[u];
else if (tmp <= f[u]) f[u] = tmp;
}
void solve(){
K = RD(); REP(i,K) t[i] = RD();
rebuild(); dp(1);
printf("%lld\n",f[1]);
}
int main(){
memset(h,-1,sizeof(h));
n = RD(); int a,b,w;
for (int i = 1; i < n; i++) a = RD(),b = RD(),w = RD(),build(a,b,w);
mn[1] = INF; dfs(1,0,0); init();
REP(i,n) h[i] = -1;
m = RD(); while (m--) solve();
return 0;
}

BZOJ2286 [Sdoi2011]消耗战 【虚树 + 树形Dp】的更多相关文章

  1. BZOJ2286: [Sdoi2011]消耗战(虚树/树形DP)

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5246  Solved: 1978[Submit][Status][Discuss] Descript ...

  2. 【BZOJ-2286】消耗战 虚树 + 树形DP

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2120  Solved: 752[Submit][Status] ...

  3. BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)

    题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...

  4. BZOJ 2286: [Sdoi2011]消耗战 虚树 树形dp 动态规划 dfs序

    https://www.lydsy.com/JudgeOnline/problem.php?id=2286 wa了两次因为lca犯了zz错误 这道题如果不多次询问的话就是裸dp. 一棵树上多次询问,且 ...

  5. 【BZOJ2286】【SDOI2011】消耗战 [虚树][树形DP]

    消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一场战争中,战场由n个岛屿和n-1 ...

  6. [BZOJ2286][SDOI2011]消耗战(虚树DP)

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4998  Solved: 1867[Submit][Statu ...

  7. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  8. [SDOI2011]消耗战(虚树+树形动规)

    虚树dp 虚树的主要思想: 不遍历没用的的节点以及没用的子树,从而使复杂度降低到\(\sum\limits k\)(k为询问的节点的总数). 所以怎么办: 只把询问节点和其LCA放入询问的数组中. 1 ...

  9. bzoj2286: [Sdoi2011]消耗战 虚树

    在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个 ...

  10. luogu P2495 [SDOI2011]消耗战 |虚树+LCA+dp

    题目描述 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知 ...

随机推荐

  1. fopen,fwrite,fread使用

    fopen, fwrite, fread详解 1.头文件 #include <stdio.h> 2.fopen (1) 函数原型 FILE *fopen(char *filename, * ...

  2. java时间"yyyy-mm-dd HH:mm:ss"转成Date

    SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String time="1 ...

  3. (数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)

    聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接 ...

  4. 博科brocade光纤交换机alias-zone的划分-->实操案例

    一,图形化操作 光纤交换机作为SAN网络的重要组成部分,在日常应用中非常普遍,本次将以常用的博科交换机介绍基本的配置方法. 博科300实物图: 环境描述: 如上图,四台服务器通过各自的双HBA卡连接至 ...

  5. PRO*C 函数事例 3 -- 游标使用

    1.Oracle中的游标    Oracle使用两种游标: 显式游标和隐式游标. 不管语句返回多少条记录, Oracle为每条使用的SQL语句隐式地定义一个游标. Oracle为每个DELETE , ...

  6. linux shell中读写操作mysql数据库

    本文介绍了如何在shell中读写mysql数据库.主要介绍了如何在shell 中连接mysql数据库,如何在shell中创建数据库,创建表,插入csv文件,读取mysql数据库,导出mysql数据库为 ...

  7. Bootstrap开发漂亮的前端界面之实现原理

    引:Bootstrap采用的是一个“响应式”设计.响应式Web 设计是一个让用户通过各种尺寸的设备浏览网站获得良好的视觉效果的方法.例如,您先在计算机显示器上浏览一个网站,然后再智能手机上浏览,智能手 ...

  8. 【连载】Bootstrap开发漂亮的前端界面之插件开发

    相关文章: 1.<教你用Bootstrap开发漂亮的前端界面> 2.<Bootstrap开发漂亮的前端界面之实现原理> 3.<Bootstrap开发漂亮的前端界面之自定义 ...

  9. 《python核心编程第二版》第1章练习

    1–1. 安装 Python.请检查 Python 是否已经安装到你的系统上,如果没有,请下载并 安装它 略 1–2.  执行 Python.有多少种运行 Python 的不同方法?你喜欢哪一种?为什 ...

  10. 菜鸟级appium 必看

    之所以写这个,因为太多新人,appium环境半天都搭建不好,版本问题,兼容问题等等. 自己的解决方案:1 官网下载nodejs,建议安装长期支持版 2 进入appium官网,点击下载,跳转到githu ...