spark编译安装 spark 2.1.0 hadoop2.6.0-cdh5.7.0
1、准备:
centos 6.5
jdk 1.7
Java SE安装包下载地址:http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
maven3.3.9
Maven3.3.9安装包下载地址:https://mirrors.tuna.tsinghua.edu.cn/apache//maven/maven-3/3.3.9/binaries/
spark 2.1.0 下载
http://spark.apache.org/downloads.html
下载后文件名:

***************************************************分界线 编译开始*********************************************************************
上传到linux
安装maven,解压,配置环境变量
在此略掉...
mvn-v

说明mvn就已经没问题
*************************************************************分界线***********************************************************************************
我的hadoop版本是hadoop2.6.0-cdh5.7.0
解压spark源码包

得到源码包

忽略我这边已经编译好的spark安装包
先设置maven的内存,不然会有问题,直接设置临时的
export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m"
[root@master109 opt]# echo $MAVEN_OPTS
-Xmx2g -XX:ReservedCodeCacheSize=512m
进入spark源码主目录

./dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz -Phadoop-2.6 -Dhadoop.version=2.6.0-cdh5.7.0 -Phive -Phive-thriftserver -Pyarn
结果:
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 9.810 s (Wall Clock)
[INFO] Finished at: 2017-10-13T15:52:09+08:00
[INFO] Final Memory: 67M/707M
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal on project spark-launcher_2.11: Could not resolve dependencies for project org.apache.spark:spark-launcher_2.11:jar:2.1.0: Failure to find org.apache.hadoop:hadoop-client:jar:2.6.0-cdh5.7.0 in https://repo1.maven.org/maven2 was cached in the local repository, resolution will not be reattempted until the update interval of central has elapsed or updates are forced -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/DependencyResolutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR] mvn <goals> -rf :spark-launcher_2.11
编译失败,显示没有找到一些包,这里是数据源不对,默认的是Apache的源,这里要改成cdh的源
编辑 pom.xml
[root@master109 spark-2.1.0]# ls
appveyor.yml bin common CONTRIBUTING.md data docs external launcher licenses mllib NOTICE project R repl scalastyle-config.xml streaming tools
assembly build conf core dev examples graphx LICENSE mesos mllib-local pom.xml python README.md sbin sql target yarn
[root@master109 spark-2.1.0]# vim pom.xml
在如下位置插入
#---------------------------------------------
中间的内容,改变数据源。记住,删掉上下的分隔符。
#---------------------------------------------
<repositories>
<repository>
<id>central</id>
<!-- This should be at top, it makes maven try the central repo first and then others and hence faster dep resolution -->
<name>Maven Repository</name>
<url>https://repo1.maven.org/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository> #---------------------------------------------
<repository>
<id>cloudera</id>
<name>cloudera Repository</name>
<url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
</repository>
#---------------------------------------------
</repositories>
重新编译开始:
[root@master109 spark-2.1.0]# ./dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz -Phadoop-2.6 -Dhadoop.version=2.6.0-cdh5.7.0 -Phive -Phive-thriftserver -Pyarn
等待几分钟:
[INFO] Reactor Summary:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [ 3.997 s]
[INFO] Spark Project Tags ................................. SUCCESS [ 3.394 s]
[INFO] Spark Project Sketch ............................... SUCCESS [ 14.061 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 37.680 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [ 12.750 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 33.158 s]
[INFO] Spark Project Launcher ............................. SUCCESS [ 50.148 s]
[INFO] Spark Project Core ................................. SUCCESS [04:16 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [ 45.832 s]
[INFO] Spark Project GraphX ............................... SUCCESS [ 26.712 s]
[INFO] Spark Project Streaming ............................ SUCCESS [ 58.080 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [02:22 min]
[INFO] Spark Project SQL .................................. SUCCESS [03:02 min]
[INFO] Spark Project ML Library ........................... SUCCESS [02:16 min]
[INFO] Spark Project Tools ................................ SUCCESS [ 2.588 s]
[INFO] Spark Project Hive ................................. SUCCESS [01:19 min]
[INFO] Spark Project REPL ................................. SUCCESS [ 6.337 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [ 13.252 s]
[INFO] Spark Project YARN ................................. SUCCESS [ 57.556 s]
[INFO] Spark Project Hive Thrift Server ................... SUCCESS [ 45.074 s]
[INFO] Spark Project Assembly ............................. SUCCESS [ 7.410 s]
[INFO] Spark Project External Flume Sink .................. SUCCESS [ 30.214 s]
[INFO] Spark Project External Flume ....................... SUCCESS [ 19.359 s]
[INFO] Spark Project External Flume Assembly .............. SUCCESS [ 6.082 s]
[INFO] Spark Integration for Kafka 0.8 .................... SUCCESS [ 30.266 s]
[INFO] Spark Project Examples ............................. SUCCESS [ 28.668 s]
[INFO] Spark Project External Kafka Assembly .............. SUCCESS [ 6.919 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [ 30.811 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [ 6.551 s]
[INFO] Kafka 0.10 Source for Structured Streaming ......... SUCCESS [ 17.707 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 13:25 min (Wall Clock)
[INFO] Finished at: 2017-10-13T16:35:47+08:00
[INFO] Final Memory: 90M/979M
[INFO] ------------------------------------------------------------------------
完事!
2017-10-13 16:55:55
作者by :山高似水深(http://www.cnblogs.com/tnsay/)转载注明出处。
spark编译安装 spark 2.1.0 hadoop2.6.0-cdh5.7.0的更多相关文章
- 基于cdh5.10.x hadoop版本的apache源码编译安装spark
参考文档:http://spark.apache.org/docs/1.6.0/building-spark.html spark安装需要选择源码编译方式进行安装部署,cdh5.10.0提供默认的二进 ...
- 编译安装spark 1.5.x(Building Spark)
原文连接:http://spark.apache.org/docs/1.5.0/building-spark.html · Building with build/mvn · Building a R ...
- Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Spark .时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 ...
- Spark编译安装和运行
一.环境说明 Mac OSX Java 1.7.0_71 Spark 二.编译安装 tar -zxvf spark-.tgz cd spark- ./sbt/sbt assembly ps:如果之前执 ...
- Spark编译及spark开发环境搭建
最近需要将生产环境的spark1.3版本升级到spark1.6(尽管spark2.0已经发布一段时间了,稳定可靠起见,还是选择了spark1.6),同时需要基于spark开发一些中间件,因此需要搭建一 ...
- Cenos7 编译安装 Mariadb Nginx PHP Memcache ZendOpcache (实测 笔记 Centos 7.0 + Mariadb 10.0.15 + Nginx 1.6.2 + PHP 5.5.19)
环境: 系统硬件:vmware vsphere (CPU:2*4核,内存2G,双网卡) 系统版本:CentOS-7.0-1406-x86_64-DVD.iso 安装步骤: 1.准备 1.1 显示系统版 ...
- hadoop2.3.0cdh5.0.2 升级到cdh5.7.0
后儿就放假了,上班这心真心收不住,为了能充实的度过这难熬的两天,我决定搞个大工程.....ps:我为啥这么期待放假呢,在沙发上像死人一样躺一天真的有意义嘛....... 当然版本:hadoop2.3. ...
- Spark入门实战系列--2.Spark编译与部署(上)--基础环境搭建
[注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.Spark编译与部署将以CentOS 64位操作系统为基础,主要是考虑到实际应用 ...
- Spark编译与部署
Spark入门实战系列--2.Spark编译与部署(上)--基础环境搭建 [注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.S ...
随机推荐
- Android UID and PID
Android UID and PID 我们经常在一个activity中去start另一个activity,或者与另一个acitivity的结果进行交互 (startActivityForResult ...
- Ubuntu下搭建WordPress环境
WordPress是一种使用PHP语言开发的博客平台,用户可以在支持PHP和MySQL数据库的服务器上架设属于自己的网站.也可以把 WordPress当作一个内容管理系统(CMS)来使用.WordPr ...
- 星火计划ROS机器人Spark
星火计划ROS机器人Spark 1 http://wiki.ros.org/Robots/Spark 2 https://github.com/NXROBO/spark ---- Spark Spar ...
- 如何突破JAVA程序员三年的门槛
第一阶段:三年 我认为三年对于程序员来说是第一个门槛,这个阶段将会淘汰掉一批不适合写代码的人.这一阶段,我们走出校园,迈入社会,成为一名程序员,正式从书本 上的内容迈向真正的企业级开发.我们知道如何团 ...
- Android使用Http协议访问网络——HttpConnection
套路篇 使用HttpConnection访问网络一般有如下的套路: 1.获取到HttpConnection的实例,new出一个URL对象,并传入目标的网址,然后调用一下openConnection() ...
- Requst Servervariables
Request.ServerVariables("Url") 返回服务器地址 Request.ServerVariables("Path_Info") 客户端提 ...
- 深入理解java虚拟机-第12章Java内存模型与线程
第12章 Java内存模型与线程 Java内存模型 主内存与工作内存: java内存模型规定了所有的变量都在主内存中,每条线程还有自己的工作内存. 工作内存中保存了该线程使用的主内存副本拷贝,线程对 ...
- HihoCoder1621 : 超市规划(四边形DP优化)()
超市规划 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi居住的城市的中轴线恰好是一条马路.沿着这条马路一共坐落有N个居民小区,其中第i个小区距离马路一端的距离是A ...
- oracle alter table
oracle alter table ALTER TABLE (表名) ADD (列名 数据类型); ALTER TABLE (表名) MODIFY (列名 数据类型); ALTER TABLE (表 ...
- 重温CLR(四)基元类型、引用类型、值类型
编程语言的基元类型 编译器直接支持的数据类型称为基元类型(primitive type).基元类型直接映射到framework类型(fcl)中存在的类型. 下表列出fcl类型 从另一个角度,可以认为C ...