合唱队

Time Limit: 4 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  

Input

  

Output

  

Sample Input

  4
  1701 1702 1703 1704

Sample Output

  8

HINT

  

Main idea

  给定一个元素两两不相等的目标序列,每次按照给定方式将一个元素加入到序列当中,问得到目标序列的方案有几种。(加元素的方式:如果加的这个元素比上一个加入的元素小的话则放在队头,否则放在队尾)。

Solution

  发现题目要求的是方案数,并且没有什么一眼看过去的规律,不可能是找规律了,那么我们想到了区间DP。
  由于题目给定的加入元素的方式,我们可以清楚的知道新元素要么加在队头要么加在队尾,所以说在某种程度上这个序列是连续的(或者说有特殊的性质),并且对于新加入的元素的位置的影响只跟上一次的加入元素有关。
  根据这个特殊性质我们想到了区间DP,令f[l][r][0\1]表示区间l~r中现在加入的元素放在队头\队尾
  那么显然,初值即为f[i][i][0]=1或f[i][i][1]=1,并且如果放在队头的话f[l][r][0]应该从f[l+1][r][0\1]推导过来,继续思考发现从f[l+1][r][0]推导过来的条件是a[l]<a[l+1],从f[l][r][1]推导过来的条件则应该是a[l]<a[r],f[l][r][1]情况类似。
  这样跑一遍区间DP最后答案显然就是f[1][n][0]+f[1][n][1]了。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std; const int ONE=;
const int MOD=; int n;
int a[ONE];
int f[ONE][ONE][]; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n=get();
for(int i=;i<=n;i++)
{
a[i]=get();
} for(int i=;i<=n;i++) f[i][i][]=; for(int l=n;l>=;l--)
for(int r=l+;r<=n;r++)
{
f[l][r][]=( f[l][r][] + f[l+][r][] * (a[l]<a[l+]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l+][r][] * (a[l]<a[r]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l][r-][] * (a[r]>a[l]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l][r-][] * (a[r]>a[r-]) ) % MOD;
} printf("%d",(f[][n][]+f[][n][]) % MOD);
}

【BZOJ1996】【HNOI2010】合唱队 [区间DP]的更多相关文章

  1. P3205 [HNOI2010]合唱队[区间dp]

    题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  2. [HNOI2010]合唱队 区间DP

    ---题面--- 题解: 偶然翻到这道题,,,就写了. 观察到一个数被插在哪里只受前一个数的影响,如果明确了前一个数是哪个,那么我们就可以确定大小关系,就可以知道当前这个数插在哪里,而上一个插入的数就 ...

  3. BZOJ1996:[HNOI2010]CHORUS 合唱队(区间DP)

    Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 辣鸡guide真难用 ...

  4. LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP

    区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...

  5. [HNOI2010]CHORUS 合唱队 (区间DP)

    题目描述 对于一个包含 NN 个整数的数列 AA ,我们可以把它的所有元素加入一个双头队列 BB . 首先 A1A1 作为队列的唯一元素,然后依次加入 A2∼ANA2∼AN ,如果 Ai<Ai− ...

  6. 【BZOJ1996】[Hnoi2010]chorus 合唱队 区间DP

    [BZOJ1996][Hnoi2010]chorus 合唱队 Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Ou ...

  7. BZOJ1996 HNOI2010合唱队(区间dp)

    设f[i][j][0/1]表示i~j这段区间上一次选择的是最左/最右人的方案数.转移显然. #include<iostream> #include<cstdio> #inclu ...

  8. BZOJ1996 合唱队 区间DP

    OJ地址:http://www.lydsy.com/JudgeOnline/problem.php?id=1996 设dp(i,j,k)代表在理想结果中[i,j]段最后添加的是i或j(k=0or1) ...

  9. 洛谷P3205合唱队——区间DP

    题目:https://www.luogu.org/problemnew/show/P3205 枚举点,分类为上一个区间的左端点或右端点,满足条件便+=即可: 注意不要重复(当l=2时). 代码如下: ...

随机推荐

  1. python的正则表达一

    一.常用的正则表达式 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种 ...

  2. 2016.01.04接触spring一年开始读spring源码

    http://www.cnblogs.com/xing901022/p/4178963.html#_label0 遇到第一个问题The processing instruction target ma ...

  3. centos linux 因别名问题引起的麻烦及解决技巧

    老男孩儿-19期 L005-13节中分享.自己整理后发到自己微博中留档. 原文:http://oldboy.blog.51cto.com/2561410/699046 实例:老男孩linux实战培训第 ...

  4. MySQL数据库服务器逐渐变慢分析

    第一步 检查系统的状态 1.1 使用sar来检查操作系统是否存在IO问题 #sar -u 2 10 — 即每隔2秒检察一次,共执行20次. [root@CacheMemCache tester]# s ...

  5. NSOperation那点事儿

    1. NSOperation.NSOperationQueue 简介 NSOperation.NSOperationQueue 是苹果提供给我们的一套多线程解决方案.实际上 NSOperation.N ...

  6. iOS-读写plist文件

    读写plist文件 问题,我有一个plist文件,表示56个民族的,但是里面保存的字典,我想转换成一个数组 好的,那么就先遍历这个plist,然后将结果保存到一个数组中,这里出现的一个问题就是C语言字 ...

  7. 输出1-n的全排(递归C++)

    [问题描述] 输出1到n之间所有不重复的排列,即1到n的全排,要求所产生的任一数列不含有重复的数字. [代码展示] #include<iostream>using namespace st ...

  8. java设计模式之责任链模式以及在java中作用

    责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其下家的引用而连接起来形成一条链.请求在这个链上传递,直到链上的某一个对象决定处理此请求.发出这个请求的客户端并不知道链上的哪一个 ...

  9. 移动端webapp如何隐藏浏览器的导航栏

    webapp如何隐藏浏览器的导航栏 在webapp开发中,手机浏览器的导航栏会让我们的页面看起来很怪异,这个时候我们就需要将导航栏给隐藏起来,隐藏的方法十分简单,只需要在head头中加入以下几行代码就 ...

  10. SSH 项目中 使用websocket 实现网页聊天功能

    参考文章  :java使用websocket,并且获取HttpSession,源码分析    http://www.cnblogs.com/zhuxiaojie/p/6238826.html 1.在项 ...