合唱队

Time Limit: 4 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  

Input

  

Output

  

Sample Input

  4
  1701 1702 1703 1704

Sample Output

  8

HINT

  

Main idea

  给定一个元素两两不相等的目标序列,每次按照给定方式将一个元素加入到序列当中,问得到目标序列的方案有几种。(加元素的方式:如果加的这个元素比上一个加入的元素小的话则放在队头,否则放在队尾)。

Solution

  发现题目要求的是方案数,并且没有什么一眼看过去的规律,不可能是找规律了,那么我们想到了区间DP。
  由于题目给定的加入元素的方式,我们可以清楚的知道新元素要么加在队头要么加在队尾,所以说在某种程度上这个序列是连续的(或者说有特殊的性质),并且对于新加入的元素的位置的影响只跟上一次的加入元素有关。
  根据这个特殊性质我们想到了区间DP,令f[l][r][0\1]表示区间l~r中现在加入的元素放在队头\队尾
  那么显然,初值即为f[i][i][0]=1或f[i][i][1]=1,并且如果放在队头的话f[l][r][0]应该从f[l+1][r][0\1]推导过来,继续思考发现从f[l+1][r][0]推导过来的条件是a[l]<a[l+1],从f[l][r][1]推导过来的条件则应该是a[l]<a[r],f[l][r][1]情况类似。
  这样跑一遍区间DP最后答案显然就是f[1][n][0]+f[1][n][1]了。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std; const int ONE=;
const int MOD=; int n;
int a[ONE];
int f[ONE][ONE][]; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n=get();
for(int i=;i<=n;i++)
{
a[i]=get();
} for(int i=;i<=n;i++) f[i][i][]=; for(int l=n;l>=;l--)
for(int r=l+;r<=n;r++)
{
f[l][r][]=( f[l][r][] + f[l+][r][] * (a[l]<a[l+]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l+][r][] * (a[l]<a[r]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l][r-][] * (a[r]>a[l]) ) % MOD;
f[l][r][]=( f[l][r][] + f[l][r-][] * (a[r]>a[r-]) ) % MOD;
} printf("%d",(f[][n][]+f[][n][]) % MOD);
}

【BZOJ1996】【HNOI2010】合唱队 [区间DP]的更多相关文章

  1. P3205 [HNOI2010]合唱队[区间dp]

    题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  2. [HNOI2010]合唱队 区间DP

    ---题面--- 题解: 偶然翻到这道题,,,就写了. 观察到一个数被插在哪里只受前一个数的影响,如果明确了前一个数是哪个,那么我们就可以确定大小关系,就可以知道当前这个数插在哪里,而上一个插入的数就 ...

  3. BZOJ1996:[HNOI2010]CHORUS 合唱队(区间DP)

    Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 辣鸡guide真难用 ...

  4. LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP

    区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...

  5. [HNOI2010]CHORUS 合唱队 (区间DP)

    题目描述 对于一个包含 NN 个整数的数列 AA ,我们可以把它的所有元素加入一个双头队列 BB . 首先 A1A1 作为队列的唯一元素,然后依次加入 A2∼ANA2∼AN ,如果 Ai<Ai− ...

  6. 【BZOJ1996】[Hnoi2010]chorus 合唱队 区间DP

    [BZOJ1996][Hnoi2010]chorus 合唱队 Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Ou ...

  7. BZOJ1996 HNOI2010合唱队(区间dp)

    设f[i][j][0/1]表示i~j这段区间上一次选择的是最左/最右人的方案数.转移显然. #include<iostream> #include<cstdio> #inclu ...

  8. BZOJ1996 合唱队 区间DP

    OJ地址:http://www.lydsy.com/JudgeOnline/problem.php?id=1996 设dp(i,j,k)代表在理想结果中[i,j]段最后添加的是i或j(k=0or1) ...

  9. 洛谷P3205合唱队——区间DP

    题目:https://www.luogu.org/problemnew/show/P3205 枚举点,分类为上一个区间的左端点或右端点,满足条件便+=即可: 注意不要重复(当l=2时). 代码如下: ...

随机推荐

  1. 使用JDK自带的keytool工具生成证书

    一.keytool 简介 keytool 是java用于管理密钥和证书的工具,它使用户能够管理自己的公钥/私钥对及相关证书,用于(通过数字签名)自我认证(用户向别的用户/服务认证自己)或数据完整性以及 ...

  2. nginx启动和配置

    1.命令行参数 -c </path/to/config> 为 Nginx 指定一个配置文件,来代替缺省的.路径应为绝对路径 -t 不运行,而仅仅测试配置文件.nginx 将检查配置文件的语 ...

  3. linux学习笔记---学习总结②

    table ----> 展示数据 table --->表格 border cellspacing cellpadding width height tr --->行 align th ...

  4. Python 学习笔记之—— PIL 库

    PIL,全称 Python Imaging Library,是 Python 平台一个功能非常强大而且简单易用的图像处理库.但是,由于 PIL 仅支持到Python 2.7,加上年久失修,于是一群志愿 ...

  5. AMR无限增发代币至任意以太坊地址的漏洞利用及修复过程

    AMR无限增发代币至任意以太坊地址的漏洞利用及修复过程 0x00 项目简述 Ammbr主要目标是打造具有高度弹性且易于连接的分布式宽带接入平台,同时降低上网相关成本.Ammbr打算创建具有人工智能和智 ...

  6. 启动 SQL Server 管理 Studio 在 SQL Server 2008R2 中的错误消息:"无法读取此系统上以前注册的服务器的列表" 解决方法

    问题: 服务器被人直接停掉,重启后,发现sqlserver2008r2 启动管理器报错: "无法读取此系统上以前注册的服务器的列表" 如图: 点击继续,进入后: 解决方法: 点击上 ...

  7. 【转】The best career advice I’ve received

    原文地址:http://www.nczonline.net/blog/2013/10/15/the-best-career-advice-ive-received/ I recently had an ...

  8. 简明Python3教程 1.介绍

    Python是少有的几种既强大又简单的编程语言.你将惊喜地发现通过使用Python即可轻松专注于解决问题而非和你所用的语言格式与结构. 下面是Python的官方介绍: Python is an eas ...

  9. flex builder 4

    下载地址(需要登录):http://trials.adobe.com/AdobeProducts/FLBR/4/win32/FlashBuilder_4_LS10.exe 很全的在线帮助文档:http ...

  10. lincode-58-四数之和

    58-四数之和 给一个包含n个数的整数数组S,在S中找到所有使得和为给定整数target的四元组(a, b, c, d). 注意事项 四元组(a, b, c, d)中,需要满足a <= b &l ...