Doom

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1401    Accepted Submission(s): 368

Problem Description
THE END IS COMINGGGGGG!

Mike has got stuck on a mystery machine. If he cannot solve this problem, he will go to his doom.

This machine is consist of n cells, and a screen. The i-th cell contains a number ai(1≤i≤n). The screen also contains a number s, which is initially 0.

There is a button on each cell. When the i-th is pushed, Mike observes that, the number on the screen will be changed to s+ai, where s is the original number. and the number on the i-th cell will be changed to a2i.

Mike observes that the number is stored in radix p, where p=9223372034707292160. In other words  , the operation is under modulo p.

And now, Mike has got a list of operations. One operation is to push buttons between from l-th to r-th (both included), and record the number on the screen. He is tired of this stupid work, so he asks for your help. Can you tell him, what are the numbers recorded.

 
Input
The first line contains an integer T(T≤5), denoting the number of test cases.

For each test case, the first line contains two integers n,m(1≤n,m≤105).

The next line contains n integers ai(0≤ai<p), which means the initial values of the n cells.

The next m lines describe operations. In each line, there are two integers l,r(1≤l≤r≤n), representing the operation.

 
Output
For each test case, output ''Case #t:'', to represent this is the t-th case. And then output the answer for each query operation, one answer in a line.

For more details you can take a look at the example.

 
Sample Input
2
4 4
2 3 4 5
1 2
2 3
3 4
1 4
1 3
2
1 1
1 1
1 1
 
Sample Output
Case #1:
5
18
39
405
Case #2:
2
6
22
 
Source
 
 
给出n个数和一个初始值为0的答案。每次操作给出一个区间[l,r],把区间所有的数加到答案中,
之后把区间的每个数都平方。每次操作都需要输出答案 mod 9223372034707292160(2 ^ 63 - 2 ^ 31)
思路,
求区间和,容易想到线段树,但是这个题要把区间中的数平方取模,好像没法维护区间和。
但是关键是任意数的平方对题目中的mod取模,重复操作至多29次就会进入一个不变的数。
怎么知道最后会不变的...坑爹
 #include <bits/stdc++.h>
using namespace std; #define L(root) ((root) << 1)
#define R(root) (((root) << 1) | 1) #define LL long long
#define ULL unsigned long long
//const long long mod=((1ll<<63)-(1ll<<31));//这是个什么数 const ULL MOD = 9223372034707292160ULL; //乘法转加法
ULL squareMod(ULL a)
{
ULL b = a;
ULL sum = ;
while (b) {
if (b & ) {
sum = (sum + a) % MOD;
}
a = (a + a) % MOD;
b >>= ;
}
return sum;
} const int MAXN = 1e5 + ;
ULL numbers[MAXN]; struct Node {
int left, right;
ULL sum;
bool same;//
//int cnt;//
int mid()
{
return left + ((right - left) >> );
}
} tree[MAXN * ]; void pushUp(int root)
{
tree[root].sum = (tree[L(root)].sum + tree[R(root)].sum) % MOD;
tree[root].same = tree[L(root)].same && tree[R(root)].same;
//tree[root].cnt = min(tree[L(root)].cnt, tree[R(root)].cnt);
} void build(int root, int left, int right)
{
tree[root].left = left;
tree[root].right = right;
if (left == right) {
tree[root].sum = numbers[left];
tree[root].same = false;
//tree[root].cnt = 0;
return;
}
int mid = tree[root].mid();
build(L(root), left, mid);
build(R(root), mid + , right);
pushUp(root);
} ULL query(int root, int left, int right)
{
if (tree[root].left == left && tree[root].right == right) {
return tree[root].sum;
}
int mid = tree[root].mid();
if (right <= mid) {
return query(L(root), left, right);
} else if (mid < left) {
return query(R(root), left, right);
} else {
return (query(L(root), left, mid) + query(R(root), mid + , right)) % MOD;
}
} void update(int root, int left, int right, int add)
{
//重点,如区间内所有数字乘方取模已经不变,则无需更新
if (tree[root].same) {
//也可以用乘方次数,问题是怎么知道这个数字捏?
//if (tree[root].cnt > 30) {
return;
}
if (tree[root].left == tree[root].right) {
//直接乘会超限
//ULL tmp = tree[root].sum * tree[root].sum % MOD;
ULL tmp = squareMod(tree[root].sum);
if (tmp == tree[root].sum) {
tree[root].same = true;
return;
}
//++tree[root].cnt;
tree[root].sum = tmp;
return;
}
int mid = tree[root].mid();
if (right <= mid) {
update(L(root), left, right, add);
} else if (left > mid) {
update(R(root), left, right, add);
} else {
update(L(root), left, mid, add);
update(R(root), mid + , right, add);
}
pushUp(root);
} int main()
{
// printf("%lld\n", mod);
// printf("%lld\n", MOD);
// test();
int t;
int n, m;
int l, r;
int i;
ULL s;
int cas = ;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
for (i = ; i <= n; ++i) {
scanf("%llu", &numbers[i]);
}
build(, , n);
printf("Case #%d:\n", ++cas);
s = ;
for (i = ; i < m; ++i) {
scanf("%d%d", &l, &r);
//printf("%d\n", query(1, l, r));
s = (s + query(, l, r)) % MOD;
printf("%llu\n", s);
update(, l, r, );
}
}
return ;
}

hdu 5239 Doom(线段树)的更多相关文章

  1. HDU 5239 Doom 线段树

    题意: 有\(n(1 \leq n \leq 10^5)\)个数,和\(m(1 \leq m \leq 10^5)\)操作,和一个计算\(s\),一切运算都在模\(MOD\)进行的. 操作\(l, \ ...

  2. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  3. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  4. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. HDU 5877 dfs+ 线段树(或+树状树组)

    1.HDU 5877  Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...

  6. HDU 3308 LCIS (线段树区间合并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...

  7. HDU 2795 Billboard (线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题目大意:有一块h*w的矩形广告板,要往上面贴广告;   然后给n个1*wi的广告,要求把广告贴 ...

  8. hdu 5480 Conturbatio 线段树 单点更新,区间查询最小值

    Conturbatio Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...

  9. hdu 1828 Picture(线段树 || 普通hash标记)

    http://acm.hdu.edu.cn/showproblem.php?pid=1828 Picture Time Limit: 6000/2000 MS (Java/Others)    Mem ...

随机推荐

  1. standard pbr(二)

    下一步看像素着色器代码 half4 fragBase (VertexOutputForwardBase i) : SV_Target { return fragForwardBaseInternal( ...

  2. 洛谷 P4171 [JSOI]满汉全席

    洛谷 最近刚刚学的2-sat,就刷了这道裸题. 2-sat问题一般是用tarjan求的,当出现(x,y)或(!x,y)或(x,!y)三种选择时,我们可以把!x->y,!y->x连边. 然后 ...

  3. pymysql连接数据库,实现数据库增删改查

    1.数据库连接 # 创建连接 def create_conn(): import pymysql conn = pymysql.connect( host='localhost', port=3306 ...

  4. 我的Android进阶之旅------>Android中高低API版本兼容使用@TargetApi或者@SuppressLint("NewApi")

    Android中高低API版本兼容使用@TargetApi或者@SuppressLint("NewApi") 例如:AndroidManifest.xml中,我们配置了sdk版本的 ...

  5. 返回泛型集合的SqlDBHelper

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Entity; ...

  6. python默认参数不能定义为可变对象类型

    python的默认参数只会在函数定义时被确定,而不是每次调用时重新确定,所以,一旦在函数中修改了默认参数,则在随后的调用中都会生效 由于这个特性,在定义函数时,如果默认参数使用可变的对象类型,如空列表 ...

  7. SpringMVC:学习笔记(10)——整合Ckeditor且实现图片上传

    SpringMVC:学习笔记(10)——整合Ckeditor且实现图片上传 配置CKEDITOR 精简文件 解压之后可以看到ckeditor/lang下面有很多语言的js,如果不需要那么多种语言的,可 ...

  8. MySql安装成功后命令行进行必要的配置

    1.1 首次用命令行登录 用zip方式安装成功mysql,并通过net start mysql 命令正常启动mysql服务后,打开dos命令行窗口,输入“mysql -uroot -p”或“mysql ...

  9. 基于 GitHub 搭建/创建自己博客 DIY

    此博客主要实现通过github创建个人定制的博客的功能,主要参考如下两篇文章,再次感谢. 创建GitHub技术博客全攻略 “授人以渔”的教你搭建个人独立博客 [说明]:使用本文的正确方式是参考上述两篇 ...

  10. python之json模块的基本使用

    json模块的作用:将字符串和字典相互转换 json和eval的区别: eval函数不能识别null转换成None json可以将null转换成python可以识别的None json序列化和反序列化 ...