hdu 5239 Doom(线段树)
Doom
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1401 Accepted Submission(s): 368
Mike has got stuck on a mystery machine. If he cannot solve this problem, he will go to his doom.
This machine is consist of n cells, and a screen. The i-th cell contains a number ai(1≤i≤n). The screen also contains a number s, which is initially 0.
There is a button on each cell. When the i-th is pushed, Mike observes that, the number on the screen will be changed to s+ai, where s is the original number. and the number on the i-th cell will be changed to a2i.
Mike observes that the number is stored in radix p, where p=9223372034707292160. In other words , the operation is under modulo p.
And now, Mike has got a list of operations. One operation is to push buttons between from l-th to r-th (both included), and record the number on the screen. He is tired of this stupid work, so he asks for your help. Can you tell him, what are the numbers recorded.
For each test case, the first line contains two integers n,m(1≤n,m≤105).
The next line contains n integers ai(0≤ai<p), which means the initial values of the n cells.
The next m lines describe operations. In each line, there are two integers l,r(1≤l≤r≤n), representing the operation.
For more details you can take a look at the example.
4 4
2 3 4 5
1 2
2 3
3 4
1 4
1 3
2
1 1
1 1
1 1
5
18
39
405
Case #2:
2
6
22
#include <bits/stdc++.h>
using namespace std; #define L(root) ((root) << 1)
#define R(root) (((root) << 1) | 1) #define LL long long
#define ULL unsigned long long
//const long long mod=((1ll<<63)-(1ll<<31));//这是个什么数 const ULL MOD = 9223372034707292160ULL; //乘法转加法
ULL squareMod(ULL a)
{
ULL b = a;
ULL sum = ;
while (b) {
if (b & ) {
sum = (sum + a) % MOD;
}
a = (a + a) % MOD;
b >>= ;
}
return sum;
} const int MAXN = 1e5 + ;
ULL numbers[MAXN]; struct Node {
int left, right;
ULL sum;
bool same;//
//int cnt;//
int mid()
{
return left + ((right - left) >> );
}
} tree[MAXN * ]; void pushUp(int root)
{
tree[root].sum = (tree[L(root)].sum + tree[R(root)].sum) % MOD;
tree[root].same = tree[L(root)].same && tree[R(root)].same;
//tree[root].cnt = min(tree[L(root)].cnt, tree[R(root)].cnt);
} void build(int root, int left, int right)
{
tree[root].left = left;
tree[root].right = right;
if (left == right) {
tree[root].sum = numbers[left];
tree[root].same = false;
//tree[root].cnt = 0;
return;
}
int mid = tree[root].mid();
build(L(root), left, mid);
build(R(root), mid + , right);
pushUp(root);
} ULL query(int root, int left, int right)
{
if (tree[root].left == left && tree[root].right == right) {
return tree[root].sum;
}
int mid = tree[root].mid();
if (right <= mid) {
return query(L(root), left, right);
} else if (mid < left) {
return query(R(root), left, right);
} else {
return (query(L(root), left, mid) + query(R(root), mid + , right)) % MOD;
}
} void update(int root, int left, int right, int add)
{
//重点,如区间内所有数字乘方取模已经不变,则无需更新
if (tree[root].same) {
//也可以用乘方次数,问题是怎么知道这个数字捏?
//if (tree[root].cnt > 30) {
return;
}
if (tree[root].left == tree[root].right) {
//直接乘会超限
//ULL tmp = tree[root].sum * tree[root].sum % MOD;
ULL tmp = squareMod(tree[root].sum);
if (tmp == tree[root].sum) {
tree[root].same = true;
return;
}
//++tree[root].cnt;
tree[root].sum = tmp;
return;
}
int mid = tree[root].mid();
if (right <= mid) {
update(L(root), left, right, add);
} else if (left > mid) {
update(R(root), left, right, add);
} else {
update(L(root), left, mid, add);
update(R(root), mid + , right, add);
}
pushUp(root);
} int main()
{
// printf("%lld\n", mod);
// printf("%lld\n", MOD);
// test();
int t;
int n, m;
int l, r;
int i;
ULL s;
int cas = ;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
for (i = ; i <= n; ++i) {
scanf("%llu", &numbers[i]);
}
build(, , n);
printf("Case #%d:\n", ++cas);
s = ;
for (i = ; i < m; ++i) {
scanf("%d%d", &l, &r);
//printf("%d\n", query(1, l, r));
s = (s + query(, l, r)) % MOD;
printf("%llu\n", s);
update(, l, r, );
}
}
return ;
}
hdu 5239 Doom(线段树)的更多相关文章
- HDU 5239 Doom 线段树
题意: 有\(n(1 \leq n \leq 10^5)\)个数,和\(m(1 \leq m \leq 10^5)\)操作,和一个计算\(s\),一切运算都在模\(MOD\)进行的. 操作\(l, \ ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU 5877 dfs+ 线段树(或+树状树组)
1.HDU 5877 Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
- HDU 2795 Billboard (线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题目大意:有一块h*w的矩形广告板,要往上面贴广告; 然后给n个1*wi的广告,要求把广告贴 ...
- hdu 5480 Conturbatio 线段树 单点更新,区间查询最小值
Conturbatio Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...
- hdu 1828 Picture(线段树 || 普通hash标记)
http://acm.hdu.edu.cn/showproblem.php?pid=1828 Picture Time Limit: 6000/2000 MS (Java/Others) Mem ...
随机推荐
- Linux vim编写程序时出现高亮字符,如何取消?
在“命令模式”下输入“:nohl“,再按回车,便可以取消高亮显示.
- [转载]威力导演14旗舰破解版(中文简体)|取消30天限制CyberLink&nb
2015月9月15日(当地时间),CyberLink讯连科技发布新一代视频编辑软件 — PowerDirector威力导演14,融合了上个版本发布以来的多次更新升级,威力导演依旧 ...
- Django:popup弹出框简单应用实例
效果:在p1.html页面点击,弹出p2的弹出框,填写数据,在 popup_response页面处理数据 1.url设置 urlpatterns = patterns( url(r'^p1.html' ...
- nodejs socket server 强制关闭客户端连接
nodejs socket server 强制关闭客户端连接: client.destroy()
- LeetCode:最长公共前缀【14】
LeetCode:最长公共前缀[14] 题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flo ...
- 02 Spring框架 简单配置和三种bean的创建方式
整理了一下之前学习Spring框架时候的一点笔记.如有错误欢迎指正,不喜勿喷. 上一节学习了如何搭建SpringIOC的环境,下一步我们就来讨论一下如何利用ioc来管理对象和维护对象关系. <? ...
- 如何修改Eclipse中的快捷键
首先打开Eclipse,Windows->Preferences ↓ 进入Preferences界面后,选择General->Keys ↓ 接下来你就会看到: 接下来点击OK就可以生效了.
- linux环境变量 【转】
Linux 的变量可分为两类:环境变量和本地变量 环境变量,或者称为全局变量,存在与所有的shell 中,在你登陆系统的时候就已经有了相应的系统定义的环境变量了.Linux 的环境变量具有继承性,即子 ...
- Dubbo框架入门介绍
背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 当网站流量很小时,只需一个 ...
- token的生成和应用
token的生成和应用 接口特点汇总: 1.因为是非开放性的,所以所有的接口都是封闭的,只对公司内部的产品有效: 2.因为是非开放性的,所以OAuth那套协议是行不通的,因为没有中间用户的授权过程: ...