分块,离散化,预处理出:

①前i块中x出现的次数(差分);

②第i块到第j块中的众数是谁,出现了多少次。

询问的时候,对于整块的部分直接获得答案;对于零散的部分,暴力统计每个数出现的次数,加上差分的结果,尝试更新ans。

 #include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,sum,sz,num[],l[],r[],plv[][],mode[][],mplv[][];
int a[],en,Time[],x,y,ma[],ans;
struct Point{int v,p;}b[];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
int Res,Num;char C,CH[];
inline int G()
{
Res=;C='*';
while(C<''||C>'')C=getchar();
while(C>=''&&C<=''){Res=Res*+(C-'');C=getchar();}
return Res;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
void makeblock()
{
sz=(int)sqrt((double)n); if(!sz) sz=;
for(sum=;sum*sz<n;sum++)
{
l[sum]=r[sum-]+;
r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];i++) num[i]=sum;
}
l[sum]=r[sum-]+;
r[sum]=n;
for(int i=l[sum];i<=r[sum];i++) num[i]=sum;
}
void LiSan()
{
sort(b+,b+n+);
for(int i=;i<=n;i++)
{
if(b[i].v!=b[i-].v) en++;
ma[a[b[i].p]=en]=b[i].v;
}
}
void makeplv()
{
for(int i=;i<=n;i++)
for(int j=num[i];j<=sum;j++)
plv[a[i]][j]++;
}
void makemode()
{
for(int i=;i<=sum;i++)
{
memset(Time,,sizeof(Time));
int modenow,modeplv=;
for(int j=i;j<=sum;j++)
{
for(int k=l[j];k<=r[j];k++)
{
Time[a[k]]++;
if(Time[a[k]]>modeplv||(Time[a[k]]==modeplv&&a[k]<modenow))
{
modenow=a[k];
modeplv=Time[a[k]];
}
}
mode[i][j]=modenow;
mplv[i][j]=modeplv;
}
} memset(Time,,sizeof(Time));
}
int Getplv(const int &v,const int &L,const int &R){return plv[v][R]-plv[v][L-];}
int main()
{
n=G(); m=G();
for(int i=;i<=n;i++) {b[i].v=G(); b[i].p=i;}
makeblock(); LiSan(); makeplv(); makemode();
for(int i=;i<=m;i++)
{
x=G(); y=G(); x=(x+ans-)%n+; y=(y+ans-)%n+;
if(x>y) swap(x,y);
int modenow,modeplv=;
if(num[x]+>=num[y])
{
for(int j=x;j<=y;j++)
{
Time[a[j]]++;
if(Time[a[j]]>modeplv||(Time[a[j]]==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=Time[a[j]];
}
}
for(int j=x;j<=y;j++) Time[a[j]]--;
}
else
{
modenow=mode[num[x]+][num[y]-];
modeplv=mplv[num[x]+][num[y]-];
for(int j=x;j<=r[num[x]];j++)
{
Time[a[j]]++; int t=Time[a[j]]+Getplv(a[j],num[x]+,num[y]-);
if(t>modeplv||(t==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=t;
}
}
for(int j=l[num[y]];j<=y;j++)
{
Time[a[j]]++; int t=Time[a[j]]+Getplv(a[j],num[x]+,num[y]-);
if(t>modeplv||(t==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=t;
}
}
for(int j=x;j<=r[num[x]];j++) Time[a[j]]--;
for(int j=l[num[y]];j<=y;j++) Time[a[j]]--;
}
P(ans=ma[modenow]);
}
return ;
}

【分块】bzoj2724 [Violet 6]蒲公英的更多相关文章

  1. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  2. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  3. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  4. bzoj2724: [Violet 6]蒲公英(离散化+分块)

    我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...

  5. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  6. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  7. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  8. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

  9. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

随机推荐

  1. shell脚本应用

    解析乱的日志文件到临时文件中,然后用awk  1004  cd /usr/local  1005  ll  1006  cd pttmsg/  1007  ll  1008  cd msgbin-2/ ...

  2. MyBatis的SQL语句映射文件详解

    SQL 映射XML 文件是所有sql语句放置的地方.需要定义一个workspace,一般定义为对应的接口类的路径.写好SQL语句映射文件后,需要在MyBAtis配置文件mappers标签中引用 < ...

  3. Lucene4.6查询时完全跳过打分,提高查询效率的实现方式

    由于索引的文件量比较大,而且应用中不需要对文档进行打分,只需要查询出所有满足条件的文档.所以需要跳过打分来提高查询效率.一开始想用ConstantScoreQuery,但是测试发现这个类虽然让所有返回 ...

  4. GIT 使用 osc 在线托管

    今天一看,osc的代码托管自己开了2年了,csdn的代码托管也开了3年了,只是项目里有几个了了就是fork来的,自己的也没认真写,之前工作也用git,现在改用自己的git了. 所以就把Key-gen ...

  5. python3 迭代器,生成器

    一 .什么是迭代 1. 重复 2.下次重复一定是基于上一次的结果而来 while True: cmd=input(':') print(cmd) l=[1,2,3,4] count=0 while c ...

  6. TCP/IP Http的区别

    TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据. 关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以 ...

  7. platform_driver_register,什么时候调用PROBE函数 注册后如何找到驱动匹配的设备【转】

    转自:http://blog.chinaunix.net/uid-25508271-id-2979412.html kernel_init中do_basic_setup()->driver_in ...

  8. Smith-Waterman算法及其Java实现

    Smith-Waterman算法是1981年Smith和Waterman提出的一种用来寻找并比较具有局部相似性区域的动态规划算法,很多后来的算法都是在该算法的基础上发展的.这是一种两序列局部比对算法, ...

  9. Java处理文件BOM头的方式推荐

    背景: java普通的文件读取方式对于bom是无法正常识别的. 使用普通的InputStreamReader,如果采用的编码正确,那么可以获得正确的字符,但bom仍然附带在结果中,很容易导致数据处理出 ...

  10. oracle 11g在大表中添加字段及默认值--加速

    今天遇到这个问题了.简单的增加语句,默认SQLPLUS执行,却会超时. 要增加客户端的TIMEOUT时间才可以解决.(感觉超过两三分钟,默认超时30秒) 另外, 也可以用两步操作(1,增加字段,2,修 ...