斐波那契数Fibonacci
509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N,计算 F(N)。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
0 ≤ N ≤ 30
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fibonacci-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
递归解法(Recursive)
// 时间复杂度 2^n,空间复杂度n
class Solution {
public int fib(int N) {
if (N < 2) return N;
return fib(N - 1) + fib(N - 2);
}
}
迭代(Iterative)
// 时间复杂度 n ,空间复杂度 1
class Solution {
public int fib(int N) {
if (N <= 1) return N;
int a = 0, b = 1;
while (N -- > 1) {
int sum = a + b;
a = b;
b = sum;
}
return b;
}
}
由顶到下,递归(Dynamic Programming - Top Down Approach)
// 时间复杂度降为n,空间为n
class Solution {
int[] cache = new int[31];
public int fib(int N) {
if (N <= 1) return N;
else if ( cache[N] != 0) return cache[N];
else return cache[N] = fib(N - 1) + fib(N - 2);
}
}
由下到上,计算到要求的值(Dynamic Programming - Bottom Up Approach)
//时间复杂度n,空间复杂度n
class Solution {
public int fib(int N) {
if (N<=1) return N;
return memoize(N);
}
public int memoize(int n){
int[] cache = new int[n+1];
cache[1] = 1;
for (int i=2;i <= n;i++) {
cache[i] = cache[i-1] + cache [i-2];
}
return cache[n];
}
}
873. 最长的斐波那契子序列的长度
如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。
提示:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
(对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%
思路
//思路1:两遍正序遍历+二分查找(或set)时间为O(N^2logN)
//不能用二分查找,需要找到两数之和之后循环查找,所以用HashSet
//思路2:动态规划,倒着推,状态转移方程最后第三个数到最大序列等于第二个加1
//再用hashMap存数据的,value为保存数据的索引,方便longest通过索引确定保存最大值的key
solution1
//时间复杂度为 O(n^2 log M)
class Solution {
public int lenLongestFibSubseq(int[] A) {
Set<Integer> s = new HashSet();
for (int i : A) s.add(i);
int len = A.length, ans = 0;
for (int i = 0; i < len; i++){
for (int j = i + 1; j < len; j++){
int a = A[j], b = A[i] + A[j];
if (b > A[len-1]) break;
int count = 2;
while(s.contains(b)){
int temp = b;
b += a;
a = temp;
ans = Math.max(ans,++count);
}
}
}
return ans >= 3 ? ans:0;
}
}
solution2
class Solution {
public int lenLongestFibSubseq(int[] A) {
Map<Integer,Integer> map = new HashMap();//保存原数组
Map<Integer,Integer> longest = new HashMap();//保存最大子序列,(k,i,j)key=k*len+i
int len = A.length, ans = 0;
for (int i = 0; i < len; ++i)
map.put(A[i], i);
for (int i = 0; i < len - 1; i++){
for (int j = i + 1; j < len; j++){
int mapk = A[j] - A[i];
int k = map.getOrDefault(A[j] - A[i], -1); //用map.get同时判断是否存在的一种方式
if (k >= 0 && k < i){
int count = longest.getOrDefault(k*len+i,2) + 1;//获取值默认为2,再加1
longest.put(i*len+j,count);
ans = Math.max(ans, count);
}
}
}
return ans >= 3 ? ans:0;
}
}
斐波那契数Fibonacci的更多相关文章
- [Swift]LeetCode509. 斐波那契数 | Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
- Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数
Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
- DP:斐波纳契数
题目:输出第 n 个斐波纳契数(Fibonacci) 方法一.简单递归 这个就不说了,小n怡情,大n伤身啊……当n=40的时候,就明显感觉到卡了,不是一般的慢. //输出第n个 Fibonacci 数 ...
- python实现斐波那契数列(Fibonacci sequence)
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...
- 斐波那契堆(Fibonacci heap)原理详解(附java代码实现)
前言 斐波那契堆(Fibonacci heap)是计算机科学中最小堆有序树的集合.它和二项式堆有类似的性质,但比二项式堆有更好的均摊时间.堆的名字来源于斐波那契数,它常用于分析运行时间. 堆结构介绍 ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- hdu1568&&hdu3117 求斐波那契数前四位和后四位
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...
- golang 斐波那契数
golang 斐波那契数 package main import "fmt" /* 斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci) ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
随机推荐
- 【sqli-labs】学习--待续
预备知识: 数字型注入: 这种sql语句中处理的是整型,不需要使用单引号来闭合变量的值. 首先输入id=1',此时因为不是整型,sql语句会执行出错,抛出异常. 然后输入id=1 and 1=1,此时 ...
- 《最新出炉》系列初窥篇-Python+Playwright自动化测试-22-处理select下拉框-上篇
1.简介 在实际自动化测试过程中,我们也避免不了会遇到下拉框选择的测试,因此宏哥在这里直接分享和介绍一下,希望小伙伴或者童鞋们在以后工作中遇到可以有所帮助.今天,我们讲下playwright的下拉框怎 ...
- redis主从同步及redis哨兵机制
1.主从和哨兵的作用: 角色 作用 主从 1.(提供)数据副本:多一份数据副本,保证redis高可用 2. 扩展(读)性能:如容量.QPS等 哨兵 1.监控: 监控redis主库及从库运行状态: 2 ...
- U盘插入过手机后再拔出来,windows无法识别的解决办法
win键+X,设备管理器. 找到"通用串行总线控制器",大容量USB设备,右键,卸载设备. 拔出U盘,再插入U盘. 就好了. 很明显,U盘插入手机,然后设置里点弹出后再拔,这是很规 ...
- ChatGPT提示词迭代
openAI CEO 除了上一篇讲的:限定,排除,示例,生成,扩展了其他方法,包括:关键词.调教和其他使用方法 关键词 像应用搜索引擎一样,在描述的句子开头给一些关键词,比如: 问题 代码 解释 分析 ...
- 数据库安装以及Navicat for MySQL 15安装
1.数据库安装 2.安装数据库遇到的问题,解决方案:1,2 3.Navicat for MySQL安装 4.注册码
- 基于JuiceFS 的低成本 Elasticsearch 云上备份存储
杭州火石创造是国内专注于产业大数据的数据智能服务商,为了解决数据存储及高效服务客户需求,选择了 Elasticsearch 搜索引擎进行云上存储.基于性能和成本的考虑,在阿里云选择用本地 SSD EC ...
- 开源一套快速部署程序的工具(CI/CD)
随着微服务越写越多,程序发布就成了一个麻烦事,所以写了一个部署工具 Vela,只要填写一个git地址.编译命令等简单信息,就能自动完成程序的部署. Vela 特性: 代码可在任意一台电脑自动完成编译, ...
- 滚动更新和回滚部署在 Kubernetes 中的工作原理
公众号「架构成长指南」,专注于生产实践.云原生.分布式系统.大数据技术分享. 在过去的几年中,Kubernetes 在生产环境中被广泛使用,它通过其声明式 API 提供了大量解决方案,用于编排容器. ...
- Jdk_HashMap 源码 —— hash(Object)
Jdk 源码 HashMap 的源码是在面试中考的算是比较多的,其中有很多高性能的经典写法,也值得多学习学习. 本文是本人在阅读和学习源码的过程中的笔记(不是教程),如有错误欢迎指正. Jdk Ver ...