斐波那契数Fibonacci
509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N,计算 F(N)。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
0 ≤ N ≤ 30
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fibonacci-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
递归解法(Recursive)
// 时间复杂度 2^n,空间复杂度n
class Solution {
public int fib(int N) {
if (N < 2) return N;
return fib(N - 1) + fib(N - 2);
}
}
迭代(Iterative)
// 时间复杂度 n ,空间复杂度 1
class Solution {
public int fib(int N) {
if (N <= 1) return N;
int a = 0, b = 1;
while (N -- > 1) {
int sum = a + b;
a = b;
b = sum;
}
return b;
}
}
由顶到下,递归(Dynamic Programming - Top Down Approach)
// 时间复杂度降为n,空间为n
class Solution {
int[] cache = new int[31];
public int fib(int N) {
if (N <= 1) return N;
else if ( cache[N] != 0) return cache[N];
else return cache[N] = fib(N - 1) + fib(N - 2);
}
}
由下到上,计算到要求的值(Dynamic Programming - Bottom Up Approach)
//时间复杂度n,空间复杂度n
class Solution {
public int fib(int N) {
if (N<=1) return N;
return memoize(N);
}
public int memoize(int n){
int[] cache = new int[n+1];
cache[1] = 1;
for (int i=2;i <= n;i++) {
cache[i] = cache[i-1] + cache [i-2];
}
return cache[n];
}
}
873. 最长的斐波那契子序列的长度
如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。
提示:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
(对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%
思路
//思路1:两遍正序遍历+二分查找(或set)时间为O(N^2logN)
//不能用二分查找,需要找到两数之和之后循环查找,所以用HashSet
//思路2:动态规划,倒着推,状态转移方程最后第三个数到最大序列等于第二个加1
//再用hashMap存数据的,value为保存数据的索引,方便longest通过索引确定保存最大值的key
solution1
//时间复杂度为 O(n^2 log M)
class Solution {
public int lenLongestFibSubseq(int[] A) {
Set<Integer> s = new HashSet();
for (int i : A) s.add(i);
int len = A.length, ans = 0;
for (int i = 0; i < len; i++){
for (int j = i + 1; j < len; j++){
int a = A[j], b = A[i] + A[j];
if (b > A[len-1]) break;
int count = 2;
while(s.contains(b)){
int temp = b;
b += a;
a = temp;
ans = Math.max(ans,++count);
}
}
}
return ans >= 3 ? ans:0;
}
}
solution2
class Solution {
public int lenLongestFibSubseq(int[] A) {
Map<Integer,Integer> map = new HashMap();//保存原数组
Map<Integer,Integer> longest = new HashMap();//保存最大子序列,(k,i,j)key=k*len+i
int len = A.length, ans = 0;
for (int i = 0; i < len; ++i)
map.put(A[i], i);
for (int i = 0; i < len - 1; i++){
for (int j = i + 1; j < len; j++){
int mapk = A[j] - A[i];
int k = map.getOrDefault(A[j] - A[i], -1); //用map.get同时判断是否存在的一种方式
if (k >= 0 && k < i){
int count = longest.getOrDefault(k*len+i,2) + 1;//获取值默认为2,再加1
longest.put(i*len+j,count);
ans = Math.max(ans, count);
}
}
}
return ans >= 3 ? ans:0;
}
}
斐波那契数Fibonacci的更多相关文章
- [Swift]LeetCode509. 斐波那契数 | Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
- Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数
Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
- DP:斐波纳契数
题目:输出第 n 个斐波纳契数(Fibonacci) 方法一.简单递归 这个就不说了,小n怡情,大n伤身啊……当n=40的时候,就明显感觉到卡了,不是一般的慢. //输出第n个 Fibonacci 数 ...
- python实现斐波那契数列(Fibonacci sequence)
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...
- 斐波那契堆(Fibonacci heap)原理详解(附java代码实现)
前言 斐波那契堆(Fibonacci heap)是计算机科学中最小堆有序树的集合.它和二项式堆有类似的性质,但比二项式堆有更好的均摊时间.堆的名字来源于斐波那契数,它常用于分析运行时间. 堆结构介绍 ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- hdu1568&&hdu3117 求斐波那契数前四位和后四位
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...
- golang 斐波那契数
golang 斐波那契数 package main import "fmt" /* 斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci) ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
随机推荐
- vue2.0组件之间传递数据
vue2.0组件之间传递数据 一,父向子 当父组件向子组件传数据的时候用这种方法比较简单.步骤为: 1,在子组件中声明props 2,在父组件中使用子组件时传入数据 二,组件之间 在组件之间如果两个组 ...
- 什么???CSS也能原子化!
1.什么是原子化 CSS? Atomic CSS is the approach to CSS architecture that favors small, single-purpose class ...
- LGPL协议原文及中文翻译
LGPL协议原文及中文翻译 参考链接 原文: GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 ...
- 循序渐进介绍基于CommunityToolkit.Mvvm 和HandyControl的WPF应用端开发(11) -- 下拉列表的数据绑定以及自定义系统字典列表控件
在我们开发的前端项目中,往往为了方便,都需对一些控件进行自定义的处理,以便实现快速的数据绑定以及便捷的使用,本篇随笔介绍通过抽取常见字典列表,实现通用的字典类型绑定:以及通过自定义控件的属性处理,实现 ...
- python包引用方式总结
本文为博主原创,转载请注明出处: 在Python中,有多种引用包的方式.以下是常见的方式: 1. import语句 import语句是最常见和推荐的引用包的方式.它允许你引入整个包或包中的特定模块/子 ...
- 二进制枚举&爆搜DFS
给定一个如下图所示的全圆量角器. 初始时,量角器上的指针指向刻度 0. 现在,请你对指针进行 n 次拨动操作,每次操作给定一个拨动角度 ai,由你将指针拨动 ai 度,每次的拨动方向(顺时针或逆时针) ...
- Linux g++减小可执行文件大小
去掉参数-g,产生不带有调试信息的可执行文件 加上参数-O2,产生尽可能小和尽可能快的代码 strip 可执行文件 去掉目标文件中的一些符号表.调试符号表信息,以减小程序的大小 参考文献: g++重要 ...
- 每天5分钟复习OpenStack(九)存储发展史
上一章节我们介绍了使用本地硬盘做kvm的存储池,这章开始将介绍下存储的发展历程,并介绍什么是分布式存储,为什么HDFS为有中心节点的分布式存储? 1.存储发展 在单机计算时代(大型机.小型机.微机), ...
- L3-013 非常弹的球
初速度:\(v = \sqrt{\cfrac{2 * E}{m}};\) 竖直速度:\(v_y = v \,sin(ans) = g * t\) 水平距离:\(s = v_x * 2t = v \, ...
- 常用【描述性统计指标】含义(by python)
统计学有时候会被误解,好像必须有大量的样本数据,才能使统计结果有意义.这会让我们觉得统计学离我们的日常生活很遥远. 其实,如果数据的准确度高的话,少量的样本数据同样能反映出真实的情况.比如,很多国家选 ...