前言

  红胖子,来也!
  本篇主要说亚像素角点,又叫次级像素角点,其实通俗来说,就是输入整数坐标,使用最小二乘法迭代计算所需精度的实数坐标。

 

Demo

  
  
  
  
  
  

 

亚像素角点

概述

  进行图像处理提取用于识别的特征点进行几何测量,这通常需要更高的精度,而函数goodFeaturesToTrack()只能提供简单的像素的坐怀值,也就是说,有时候会需要要实数坐标值而不是整数坐标值。
亚像素级角点检测的位置在摄像机标定、跟踪并重建摄像机的轨迹,或者重被功跟踪目标的三维结构时候,是一个基本的测量值 。

Shi-Tomasi角点检测

亚像素角点检测原理

  
  其中,(a)点p附近的图像是均匀的,其梯度为0,(b)边缘的梯度与沿地缘方向的q-p向量正交。在图中的两种情况下,p点梯度与q-p向量的点积均为0。
  假设起始角点q在实际亚像素级角点的附近。检测所有的q-p向量。若点p位于一个均匀的区域,则点p处的梯度为0。若q-p向量的方向与边缘的方向一致,则此边缘上p点处的梯度与q-p向量正交,在这两种情况下,p点处的梯度与q-p向量的点积为0。可以在p点周围找到很多组梯度以及相关的向量q节,令其点集为0,然后可以通过求解方程组,方程组的解即为角点q的亚像素级精度的位置,也就是精确的角点位置。

TermCriteri迭代标注类的构造函数

TermCriteria(int type,
int maxCount,
double epsilon);
  • 参数一:int类型的type,枚举为TermCriteria::Type类型,终止标准的类型:
      
  • 参数二:int类型的maxCount,最大迭代次数/元素数;
  • 参数三:double类型的epsilon,所需的精度。

函数原型

void cornerSubPix( InputArray image,
InputOutputArray corners,
Size winSize,
Size zeroZone,
TermCriteria criteria );
  • 参数一:InputArray类型的image,输入图像,即源图像,填Mat类的对象,必须为单通道图像;
  • 参数二:InputOutputArray类型的corners,提供输入角点的初始坐标和精确的输出坐标;
  • 参数三:Sjze类型的winSjze,搜索窗口的一半尺寸。若winSize=Size(5,5),那么就表示使用(52+1)x(52+1)=11x11大小的搜索窗口。
  • 参数四:Size类型的zeroZone,表示死区的一半尺寸。而死区为不对搜索区的中央位置做求和运算的区域,用来避免自相关矩阵出现的某些可能的奇异性。值为(-1,-1)表示没有死区。
  • 参数五:TermCriteria类型的criteria,求角点的迭代过程的终止条件。即角点位置的确定,要么迭代数大于某个设定值,或者是精到达某个设定值。cirteria可以是最大迭代数目,或者是设定的精确度,也可以是它们的组合。
 

Demo源码

void OpenCVManager::testCornerSubPix()
{
QString fileName1 =
"E:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/1.jpg";
int width = 400;
int height = 300; cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::resize(srcMat, srcMat, cv::Size(width, height)); cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName); cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 2, srcMat.rows * 3),
srcMat.type()); int qualityLevel = 1;
int minDistance = 10;
int iterations = 5;
int epsilon = 1;
while(true)
{
windowMat = cv::Scalar(0, 0, 0); cv::Mat mat; cv::Mat tempMat;
// 原图先copy到左边
mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, srcMat, 1.0f, 0.0f, mat); {
// 灰度图
cv::Mat grayMat;
cv::cvtColor(srcMat, grayMat, cv::COLOR_BGR2GRAY);
cv::Mat grayMat2;
cv::cvtColor(grayMat, grayMat2, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, grayMat2, 1.0f, 0.0f, mat); cvui::printf(windowMat, width * 1 + 20, height * 0 + 10, "qualityLevel / 100.0f");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 30, 200, &qualityLevel, 1, 99);
cvui::printf(windowMat, width * 1 + 20, height * 0 + 80, "minDistance");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 100, 200, &minDistance, 1, 100);
cvui::printf(windowMat, width * 1 + 20, height * 0 + 150, "iterations");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 170, 200, &iterations, 1, 100);
cvui::printf(windowMat, width * 1 + 20, height * 0 + 220, "epsilon/100.0f");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 240, 200, &epsilon, 1, 1000); // Shi-Tomasi角点检测
std::vector<cv::Point2f> corners;
cv::goodFeaturesToTrack(grayMat, // 输入图像
corners, // 输出角点
100, // 最大输出角点数量
qualityLevel / 100.0f, // 最小特征值
minDistance, // 最小间隔距离
cv::noArray(), // 感兴趣的区域
3, // 计算矩阵时的领域范围
false, // 不适用harris角点检测
0.04); // 权重系数 cv::Mat tempMat4 = srcMat.clone();
for (int i = 0; i < corners.size(); i++)
{
cv::circle(tempMat4, corners[i], 5, cv::Scalar(0, 255, 0), 2, 8, 0);
cvui::printf(windowMat, width * 0 + 20, height * 1 + 20 * i, "%f,%f", corners[i].x, corners[i].y);
}
// copy
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, tempMat4, 1.0f, 0.0f, mat);
//指定亚像素计算迭代标注
cv::TermCriteria criteria = cv::TermCriteria(
cv::TermCriteria::EPS,
iterations, // 迭代次数
epsilon); // 精度 //亚像素检测 cv::cornerSubPix(grayMat,
corners,
cv::Size(5, 5),
cv::Size(-1, -1),
criteria); //将检测到的亚像素角点绘制到原图上
cv::Mat tempMat3 = srcMat.clone();
for (int i = 0; i < corners.size(); i++)
{
cv::circle(tempMat3, corners[i], 5, cv::Scalar(0, 255, 0), 2, 8, 0);
cvui::printf(windowMat, width * 1 + 20, height * 1 + 20 * i, "%f,%f", corners[i].x, corners[i].y);
}
// copy
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, tempMat3, 1.0f, 0.0f, mat); }
// 更新
cvui::update();
// 显示
cv::imshow(windowName, windowMat);
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
 

工程模板:对应版本号v1.56.0

  对应版本号v1.56.0

 
 

OpenCV开发笔记(六十二):红胖子8分钟带你深入了解亚像素角点检测(图文并茂+浅显易懂+程序源码)的更多相关文章

  1. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  2. OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  4. OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  5. OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  6. OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练

    前言   红胖子,来也!  做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了.  识别可以自己写模板匹配.特征 ...

  7. OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体

    前言   级联分类器的效果并不是很好,准确度相对深度学习较低,本章使用opencv通过tensorflow深度学习,检测已有模型的分类.   Demo       可以猜测,1其实是人,18序号类是狗 ...

  8. OpenCV开发笔记(七十三):红胖子8分钟带你使用opencv+dnn+yolov3识别物体

      前言   级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类.   Demo   320x320,置信度0 ...

  9. java之jvm学习笔记六-十二(实践写自己的安全管理器)(jar包的代码认证和签名) (实践对jar包的代码签名) (策略文件)(策略和保护域) (访问控制器) (访问控制器的栈校验机制) (jvm基本结构)

    java之jvm学习笔记六(实践写自己的安全管理器) 安全管理器SecurityManager里设计的内容实在是非常的庞大,它的核心方法就是checkPerssiom这个方法里又调用 AccessCo ...

  10. 树莓派开发笔记(十二):入手研华ADVANTECH工控树莓派UNO-220套件(一):介绍和运行系统

    前言   树莓派也可以做商业应用,工业控制,其稳定性和可靠性已经得到了验证,故而工业控制,一些停车场等场景也有采用树莓派作为主控的,本片介绍了研华ADVANTECH的树莓派套件组UNO-220-P4N ...

随机推荐

  1. [转帖] Linux命令拾遗-软件资源观测

    https://www.cnblogs.com/codelogs/p/16060443.html 原创:打码日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介# 这是Linux ...

  2. 京东金融Android瘦身探索与实践

    作者:京东科技 冯建华 一.背景 随着业务不断迭代更新,App的大小也在快速增加,2019年~2022年期间一度超过了117M,期间我们也做了部分优化如图1红色部分所示,但在做优化的同时面临着新的增量 ...

  3. 【分享笔记】druid存储系统-思维导图

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu 公众号:一本正经的瞎扯 源于:<Druid实时大数据分析原理与实践>这本书的阅读笔记 ...

  4. 2021美亚杯团队赛write up

    个人赛与团队赛下载文件解压密码:MeiyaCup2021 加密容器解密密码: uR%{)Y'Qz-n3oGU`ZJo@(1ntxp8U1+bW;JlZH^I4%0rxf;[N+eQ)Lolrw& ...

  5. Fabric区块链浏览器(3)

    本文是区块链浏览器系列的第五篇,项目完整代码在这里. 在上一篇文章中给浏览器增加了简单的用户认证,至此浏览器的基本功能就已经大致完成了. 在这片文章中,我将使用kratos对区块链浏览器器进行重构,使 ...

  6. electron-builder

    electron-builder打包工具 首先,确保你的项目中已经安装了 electron-builder.可以在项目根目录下运行以下命令来安装它: npm install electron-buil ...

  7. 不同版本的Unity要求的NDK版本和两者对应关系表(Unity NDK Version Match)

    IL2CPP需要NDK Unity使用IL2CPP模式出安卓包时,需要用到NDK,如果没有安装则无法导出Android Studio工程或直接生成APK,本篇记录一下我下载NDK不同版本的填坑过程. ...

  8. 5.7 Windows驱动开发:取进程模块函数地址

    在笔者上一篇文章<内核取应用层模块基地址>中简单为大家介绍了如何通过遍历PLIST_ENTRY32链表的方式获取到32位应用程序中特定模块的基地址,由于是入门系列所以并没有封装实现太过于通 ...

  9. Python 运用zabbix开发简易巡检工具

    利用SSH或者Zabbix监控,配合Django开发框架,改造出属于自己的监控平台,实现包括主机图形,自动发现,计划任务,批量cmd执行,服务监控,日志监控等功能,由于公司机器混乱,基本上市面上的所有 ...

  10. Linux 文件目录压缩与解压命令

    Linux 文件目录压缩与解压命令,融合多部Linux经典著作,去除多余部分,保留实用部分. compress压缩: compress是个历史悠久的压缩程序,文件经它压缩后,其名称后面会多出 &quo ...