学习率是神经网络训练中最重要的超参数之一,针对学习率的优化方式很多,Warmup是其中的一种

(一)、什么是Warmup?
Warmup是在ResNet论文中提到的一种学习率预热的方法,它在训练开始的时候先选择使用一个较小的学习率,训练了一些epoches或者steps(比如4个epoches,10000steps),再修改为预先设置的学习来进行训练。

(二)、为什么使用Warmup?
由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳。

ExampleExampleExample:Resnet论文中使用一个110层的ResNet在cifar10上训练时,先用0.01的学习率训练直到训练误差低于80%(大概训练了400个steps),然后使用0.1的学习率进行训练。

(三)、Warmup的改进
(二)所述的Warmup是constant warmup,它的不足之处在于从一个很小的学习率一下变为比较大的学习率可能会导致训练误差突然增大。于是18年Facebook提出了gradual warmup来解决这个问题,即从最初的小学习率开始,每个step增大一点点,直到达到最初设置的比较大的学习率时,采用最初设置的学习率进行训练。

1.gradual warmup的实现模拟代码如下:

"""
Implements gradual warmup, if train_steps < warmup_steps, the
learning rate will be `train_steps/warmup_steps * init_lr`.
Args:
warmup_steps:warmup步长阈值,即train_steps<warmup_steps,使用预热学习率,否则使用预设值学习率
train_steps:训练了的步长数
init_lr:预设置学习率
"""
import numpy as np
warmup_steps = 2500
init_lr = 0.1
# 模拟训练15000步
max_steps = 15000
for train_steps in range(max_steps):
if warmup_steps and train_steps < warmup_steps:
warmup_percent_done = train_steps / warmup_steps
warmup_learning_rate = init_lr * warmup_percent_done #gradual warmup_lr
learning_rate = warmup_learning_rate
else:
#learning_rate = np.sin(learning_rate) #预热学习率结束后,学习率呈sin衰减
learning_rate = learning_rate**1.0001 #预热学习率结束后,学习率呈指数衰减(近似模拟指数衰减)
if (train_steps+1) % 100 == 0:
print("train_steps:%.3f--warmup_steps:%.3f--learning_rate:%.3f" % (
train_steps+1,warmup_steps,learning_rate))

  

2.上述代码实现的Warmup预热学习率以及学习率预热完成后衰减(sin or exp decay)的曲线图如下:

 (四)总结
使用Warmup预热学习率的方式,即先用最初的小学习率训练,然后每个step增大一点点,直到达到最初设置的比较大的学习率时(注:此时预热学习率完成),采用最初设置的学习率进行训练(注:预热学习率完成后的训练过程,学习率是衰减的),有助于使模型收敛速度变快,效果更佳。

warmup预热学习率的更多相关文章

  1. RateLimiter的 SmoothBursty(非warmup预热)及SmoothWarmingUp(预热,冷启动)

    SmoothBursty 主要思想 记录 1秒内的微秒数/permitsPerSencond = 时间间隔interval,每一个interval可获得一个令牌 根据允许使用多少秒内的令牌参数,计算出 ...

  2. CosineWarmup理论与代码实战

    摘要:CosineWarmup是一种非常实用的训练策略,本次教程将带领大家实现该训练策略.教程将从理论和代码实战两个方面进行. 本文分享自华为云社区<CosineWarmup理论介绍与代码实战& ...

  3. Pytorch之训练器设置

    Pytorch之训练器设置 引言 深度学习训练的时候有很多技巧, 但是实际用起来效果如何, 还是得亲自尝试. 这里记录了一些个人尝试不同技巧的代码. tensorboardX 说起tensorflow ...

  4. 性能调优必备利器之 JMH

    if 快还是 switch 快?HashMap 的初始化 size 要不要指定,指定之后性能可以提高多少?各种序列化方法哪个耗时更短? 无论出自何种原因需要进行性能评估,量化指标总是必要的. 在大部分 ...

  5. Dubbo的负载均衡算法源码分析

    Dubbo提供了四种负载均衡:RandomLoadBalance,RoundRobinLoadBalance,LeastActiveLoadBalance,ConsistentHashLoadBala ...

  6. 海华大赛第一名团队聊比赛经验和心得:AI在垃圾分类中的应用

    摘要:为了探究垃圾的智能分类等问题,由中关村海华信息研究院.清华大学交叉信息研究院以及Biendata举办的2020海华AI垃圾分类大赛吸引了大量工程师以及高校学生的参与 01赛题介绍 随着我国经济的 ...

  7. JMH 使用指南

    简介 JMH(Java Microbenchmark Harness)是用于代码微基准测试的工具套件,主要是基于方法层面的基准测试,精度可以达到纳秒级.该工具是由 Oracle 内部实现 JIT 的大 ...

  8. (八)使用 jmh 压测 Dubbo

    1.JMH简介 JMH即Java Microbenchmark Harness,是Java用来做基准测试的一个工具,该工具由OpenJDK提供并维护,测试结果可信度高. 相对于 Jmeter.ab , ...

  9. 如何对SharePoint网站进行预热(warmup)以提高响应速度

    问题描述 SharePoint Server是一个易于使用的协作平台,目前在越来越多的企业中被应用开来.SharePoint Server是通过网站的形式向最终用户提供服务的,而这个网站是基于ASP. ...

  10. [转帖]阿里的JDK预热warmup过程

    预热warmup过程 https://blog.csdn.net/wabiaozia/article/details/82056520 Jwarmup 原理是记录上一次运行时已经变成native co ...

随机推荐

  1. VSCode 配置 Spring Boot 项目开发环境

    神器IDEA在升级到2023之后越发卡顿, EDU邮箱也不能用了, 照现在这个JDK版本的升级速度, 神器不升级也不行, 需要开始物色替代品. 其它IDE我用得少, VSCode还是比较熟悉的, 可以 ...

  2. 05_QT_Mac开发环境搭建

    在不同的Mac环境下,实践出来的效果可能跟本教程会有所差异.我的Mac环境是:Intel CPU.macOS Moterey(12.4). FFmpeg 安装 在Mac环境中,直接使用Homebrew ...

  3. 面试官:小伙子,能聊明白JMM给你SSP!我:嘚吧嘚吧一万字,直接征服面试官!

    写在开头 面试官:小伙子,JMM了解吗? 我:JMM(Java Memory Model),Java内存模型呀,学过的! 面试官:那能给我详细的聊一聊吗,越详细越好! 我:嗯~,确定越详细越好?起码得 ...

  4. PAT 甲级【1011 World Cup Betting】

    import java.io.IOException; import java.io.InputStreamReader; import java.io.StreamTokenizer; public ...

  5. Spring Boot学习日记16

    了解了MVC配置原理 Spring MVC Auto-configuration // Spring Boot为Spring MVC提供了自动配置,它可以很好地与大多数应用程序一起工作. Spring ...

  6. System design summary

    system design https://github.com/donnemartin/system-design-primer Performance vs scalability scalabi ...

  7. 记录--CSS 滚动驱动动画 scroll()

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 CSS 滚动驱动动画 scroll() animation-timeline 通过 scroll() 指定可滚动元素与滚动轴来为容器动画提 ...

  8. pandas 自动化处理Excel数据

    需求: 如下一份这样的Excel数据  现在需要把学生的学号.姓名分离出来到单独的一列 ,将 测验.讨论.成绩三列转换成数值,并把讨论这列的"-"转换成 0 显示 最后把处理好的内 ...

  9. 浅谈分布式任务调度系统Celery的设计与实现

    Celery是一个简单.灵活且可靠的分布式任务队列,它支持任务的异步执行.进度监控.重试机制等功能. Celery的核心组件包括: Broker:消息中间件,如RabbitMQ.用于任务的发布和订阅. ...

  10. FPGA的PCB设计

    FPGA的PCB设计 一.FPGA的高速电路板设计 PCB板的设计规模增大,IO传输问题也就出现.为了兼容其他高速模块,必须对PCB的设计进行优化. 1️⃣电源滤波,降低系统噪声2️⃣匹配信号线3️⃣ ...