今天遇到一个性能问题,再调优过程中发现耗时最久的计划是exist 部分涉及的三个表。

然后计划用left join 来替换exist,然后查询了很多资料,大部分都说exist和left join 性能差不多。 为了验证这一结论进行了如下实验

步骤如下

1、创建测试表

drop table app_family;

CREATE TABLE app_family (

"family_id" character varying(32 char) NOT NULL,

"application_id" character varying(32 char) NULL,

"family_number" character varying(50 char) ,

"household_register_number" character varying(50 char),

"poverty_reason" character varying(32 char),

CONSTRAINT "pk_app_family_idpk" PRIMARY KEY (family_id));

insert into app_family select generate_series(1,1000000),generate_series(1,1000000),'aaaa','aaa','bbb' from dual ;

create table app_family2 as select * from app_family;

create table app_memeber as select * from app_family;

2、验证两张表join和exist 性能对比

语句1、两张表exist

explain analyze select a1.application_id,a1.family_id from app_family a1 where

a1.family_id >1000 and

EXISTS(

SELECT

1

FROM

app_family2 a2

WHERE

a2.application_id=a1.application_id

and a2.family_id > 500000

)

总计用时646.203 ms

 ----------------------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=16927.11..44466.84 rows=111111 width=12) (actual time=354.314..621.714 rows=500000 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Hash Semi Join (cost=15927.11..32355.74 rows=46296 width=12) (actual time=355.657..512.049 rows=166667 loops=3)
Hash Cond: ((a1.application_id)::text = (a2.application_id)::text)
-> Parallel Seq Scan on app_family a1 (cost=0.00..13648.00 rows=138889 width=12) (actual time=0.222..111.618 rows=333000 loops=3)
Filter: ((family_id)::integer > 1000)
Rows Removed by Filter: 333
-> Parallel Hash (cost=13648.00..13648.00 rows=138889 width=6) (actual time=149.203..149.204 rows=166667 loops=3)
Buckets: 131072 Batches: 8 Memory Usage: 3520kB
-> Parallel Seq Scan on app_family2 a2 (cost=0.00..13648.00 rows=138889 width=6) (actual time=48.576..109.251 rows=166667 loops=3)
Filter: ((family_id)::integer > 500000)
Rows Removed by Filter: 166667
Planning Time: 0.145 ms
Execution Time: 645.095 ms
(15 rows) Time: 646.203 ms
kingbase=#

语句2 两张表join

explain analyze select a1.application_id,a1.family_id from app_family a1 LEFT JOIN app_family2 a2 ON a2.application_id=a1.application_id

WHERE a1.family_id >1000 AND a2.family_id > 500000

总计执行时间624.211 ms

---------------------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=16927.11..44300.95 rows=111111 width=12) (actual time=349.752..601.304 rows=500000 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Hash Join (cost=15927.11..32189.85 rows=46296 width=12) (actual time=337.548..508.139 rows=166667 loops=3)
Hash Cond: ((a1.application_id)::text = (a2.application_id)::text)
-> Parallel Seq Scan on app_family a1 (cost=0.00..13648.00 rows=138889 width=12) (actual time=0.087..111.949 rows=333000 loops=3)
Filter: ((family_id)::integer > 1000)
Rows Removed by Filter: 333
-> Parallel Hash (cost=13648.00..13648.00 rows=138889 width=6) (actual time=131.718..131.719 rows=166667 loops=3)
Buckets: 131072 Batches: 8 Memory Usage: 3488kB
-> Parallel Seq Scan on app_family2 a2 (cost=0.00..13648.00 rows=138889 width=6) (actual time=31.730..90.917 rows=166667 loops=3)
Filter: ((family_id)::integer > 500000)
Rows Removed by Filter: 166667
Planning Time: 0.093 ms
Execution Time: 623.465 ms
(15 rows) Time: 624.211 ms

两张表场景总结

针对两张表的对比可以发现join还相对满了10几ms但是总的来说两边 差异不大。所以再两张表的关联情况下 join和exist 性能相近。

3、验证3张表join和exist 性能对比

语句1 三张表exist

本场景最开始执行时 exit 用户6 s多,原因时用到了内存排序,后来调整了work_mem 排除了内存排序的影响,最终执行时间

2911.146 ms

explain analyze select a1.application_id,a1.family_id from app_family a1 ,app_family2 a2 where

a1.family_id >1000 and a2.family_id < 900000 and

EXISTS(

SELECT

1

FROM

app_memeber m

WHERE

m.application_id=a1.application_id

and m.family_id=a2.family_id

)

------------------------------------------------------------------------------------------------------------------------------------------------------
--
Gather (cost=61282.11..88664.67 rows=111111 width=12) (actual time=2112.079..2847.233 rows=898999 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Hash Join (cost=60282.11..76553.57 rows=46296 width=12) (actual time=2119.345..2705.935 rows=299666 loops=3)
Hash Cond: ((m.family_id)::text = (a2.family_id)::text)
-> Hash Join (cost=44898.00..60455.72 rows=138889 width=18) (actual time=1885.923..2264.850 rows=333000 loops=3)
Hash Cond: ((a1.application_id)::text = (m.application_id)::text)
-> Parallel Seq Scan on app_family a1 (cost=0.00..13648.00 rows=138889 width=12) (actual time=0.091..109.196 rows=333000 loops=3)
Filter: ((family_id)::integer > 1000)
Rows Removed by Filter: 333
-> Hash (cost=32398.00..32398.00 rows=1000000 width=12) (actual time=1880.027..1880.028 rows=1000000 loops=3)
Buckets: 1048576 Batches: 1 Memory Usage: 52897kB
-> HashAggregate (cost=22398.00..32398.00 rows=1000000 width=12) (actual time=957.973..1382.683 rows=1000000 loops=3)
Group Key: (m.application_id)::text, (m.family_id)::text
-> Seq Scan on app_memeber m (cost=0.00..17398.00 rows=1000000 width=12) (actual time=0.047..247.902 rows=1000000 loops=3
)
-> Parallel Hash (cost=13648.00..13648.00 rows=138889 width=6) (actual time=231.705..231.706 rows=300000 loops=3)
Buckets: 1048576 (originally 524288) Batches: 1 (originally 1) Memory Usage: 47552kB
-> Parallel Seq Scan on app_family2 a2 (cost=0.00..13648.00 rows=138889 width=6) (actual time=0.039..100.756 rows=300000 loops=3)
Filter: ((family_id)::integer < 900000)
Rows Removed by Filter: 33334
Planning Time: 0.359 ms
Execution Time: 2911.146 ms
(22 rows)

语句2 三张表join

为了保证语句的一致性,三张表的join顺序保持和语句1的执行计划中的顺序一致,join总计用时1476.651 ms

explain analyze select a1.application_id,a1.family_id from app_family a1

left join app_memeber m on a1.application_id = m.application_id LEFT JOIN app_family2 a2 ON m.family_id = a2.family_id

WHERE a1.family_id >1000 AND a2.family_id < 900000

 Gather  (cost=32990.22..64898.93 rows=111111 width=12) (actual time=993.681..1436.895 rows=898999 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Hash Join (cost=31990.22..52787.83 rows=46296 width=12) (actual time=982.512..1241.385 rows=299666 loops=3)
Hash Cond: ((m.application_id)::text = (a1.application_id)::text)
-> Parallel Hash Join (cost=15927.11..34245.98 rows=138889 width=6) (actual time=377.411..635.945 rows=300000 loops=3)
Hash Cond: ((m.family_id)::text = (a2.family_id)::text)
-> Parallel Seq Scan on app_memeber m (cost=0.00..11564.67 rows=416667 width=12) (actual time=0.034..59.470 rows=333333 loops=3)
-> Parallel Hash (cost=13648.00..13648.00 rows=138889 width=6) (actual time=232.286..232.287 rows=300000 loops=3)
Buckets: 131072 (originally 131072) Batches: 16 (originally 8) Memory Usage: 3296kB
-> Parallel Seq Scan on app_family2 a2 (cost=0.00..13648.00 rows=138889 width=6) (actual time=0.030..104.370 rows=300000 loops=
3)
Filter: ((family_id)::integer < 900000)
Rows Removed by Filter: 33334
-> Parallel Hash (cost=13648.00..13648.00 rows=138889 width=12) (actual time=271.185..271.185 rows=333000 loops=3)
Buckets: 131072 (originally 131072) Batches: 16 (originally 8) Memory Usage: 4032kB
-> Parallel Seq Scan on app_family a1 (cost=0.00..13648.00 rows=138889 width=12) (actual time=0.091..129.188 rows=333000 loops=3)
Filter: ((family_id)::integer > 1000)
Rows Removed by Filter: 333
Planning Time: 0.140 ms
Execution Time: 1475.305 ms
(20 rows) Time: 1476.651 ms (00:01.477)

总结三张表场景

在三张表的场景下exist用时2911.146 ms ,join用时1476.651 ms 可见 join的顺序明显优于exist。

在三张表的场景下可以看到,针对中间表appmember扫描时, exist语句用到HashAggregate 并做了 Group Key,所以导致exist 执行时间增加。如果work_mem 配置不合适时间会更长。

exist和left join 性能对比的更多相关文章

  1. Go 字符串连接+=与strings.Join性能对比

    Go字符串连接 对于字符串的连接大致有两种方式: 1.通过+号连接 func StrPlus1(a []string) string { var s, sep string for i := 0; i ...

  2. 自己写的轻量级PHP框架trig与laravel5.1,yii2性能对比

    看了下当前最热门的php开发框架,想对比一下自己写的框架与这些框架的性能对比.先看下当前流行框架的投票情况. 看结果对比,每个测试脚本做了一个数据库的联表查询并进行print_r输出,查询的sql语句 ...

  3. SQL点滴10—使用with语句来写一个稍微复杂sql语句,附加和子查询的性能对比

    原文:SQL点滴10-使用with语句来写一个稍微复杂sql语句,附加和子查询的性能对比 今天偶尔看到sql中也有with关键字,好歹也写了几年的sql语句,居然第一次接触,无知啊.看了一位博主的文章 ...

  4. python3下multiprocessing、threading和gevent性能对比----暨进程池、线程池和协程池性能对比

    python3下multiprocessing.threading和gevent性能对比----暨进程池.线程池和协程池性能对比   标签: python3 / 线程池 / multiprocessi ...

  5. SQL Server-聚焦IN VS EXISTS VS JOIN性能分析(十九)

    前言 本节我们开始讲讲这一系列性能比较的终极篇IN VS EXISTS VS JOIN的性能分析,前面系列有人一直在说场景不够,这里我们结合查询索引列.非索引列.查询小表.查询大表来综合分析,简短的内 ...

  6. [原] KVM 环境下MySQL性能对比

    KVM 环境下MySQL性能对比 标签(空格分隔): Cloud2.0 [TOC] 测试目的 对比MySQL在物理机和KVM环境下性能情况 压测标准 压测遵循单一变量原则,所有的对比都是只改变一个变量 ...

  7. 浅谈C++之冒泡排序、希尔排序、快速排序、插入排序、堆排序、基数排序性能对比分析之后续补充说明(有图有真相)

    如果你觉得我的有些话有点唐突,你不理解可以想看看前一篇<C++之冒泡排序.希尔排序.快速排序.插入排序.堆排序.基数排序性能对比分析>. 这几天闲着没事就写了一篇<C++之冒泡排序. ...

  8. Java--Stream,NIO ByteBuffer,NIO MappedByteBuffer性能对比

    目前Java中最IO有多种文件读取的方法,本文章对比Stream,NIO ByteBuffer,NIO MappedByteBuffer的性能,让我们知道到底怎么能写出性能高的文件读取代码. pack ...

  9. C正则库做DNS域名验证时的性能对比

    C正则库做DNS域名验证时的性能对比   本文对C的正则库regex和pcre在做域名验证的场景下做评测. 验证DNS域名的正则表达式为: "^[0-9a-zA-Z_-]+(\\.[0-9a ...

  10. 开发语言性能对比,C++、Java、Python、LUA、TCC

    一直想做开发语言性能对比,刚好有时间都做了给大家参考一下, 编译类:C++和Java表现还不错 脚本类:TCC脚本动态运行C语言,性能比其他脚本快好多... 想玩TCC的同学下载测试包,TCC目录下修 ...

随机推荐

  1. Swoole从入门到入土(22)——多进程[Process]

    Swoole中的Process模块比原生php提供的pcntl模块,提供了更易用的多进程编程接口. 简单总结,Process模块有如下特点: · 可以方便的实现进程间通讯· 支持重定向标准输入和输出, ...

  2. Spring Boot整合JWT实现接口访问认证

    最近项目组需要对外开发相关API接口,需要对外系统进行授权认证.实现流程是先给第三方系统分配appId和appSecret,第三方系统调用我getToken接口获取token,然后将token填入Au ...

  3. 我的小程序之旅八:基于weixin-java-mp实现微信公众号被动回复消息

    在微信里有这样一个公众号[华为运动健康],当点击最新排行的时候,公众号就会发送今天最新的运动步数给你.如下图: 这里有两种格式的消息 1.有头像框,有聊天框--普通消息 2.消息有样式.颜色等--模板 ...

  4. Redis 缓存过期删除/淘汰策略分析

    Redis 缓存过期删除/淘汰策略分析 Redis 缓存删除 Redis 键过期删除,定期删除(主动)和惰性删除(被动) Redis 内存不足时,缓存淘汰策略 key 键过期删除 我们用 redis ...

  5. Maven应用常见问题

    在Spring Boot项目中打包指定类为启动类 <build> <plugins> <plugin> <groupId>org.springframe ...

  6. InSAR处理软件——Gamma 安装教程

    Gamma是由瑞士 GAMMA Remote Sensing 公司开发SAR数据处理软件,支持SAR数据全流程处理,是最InSAR最常用的软件.下面介绍该软件的安装流程,安装环境为Ubuntu16.0 ...

  7. 在 Spring Boot 3.x 中使用 SpringDoc 2 / Swagger V3

    SpringDoc V1 只支持到 Spring Boot 2.x springdoc-openapi v1.7.0 is the latest Open Source release support ...

  8. spark conf、config配置项总结

    1.structured-streaming的state 配置项总结 Config Name Description Default Value spark.sql.streaming.stateSt ...

  9. Codeforces Round 924 (Div. 2)B. Equalize(思维+双指针)

    目录 题面 链接 题意 题解 代码 题面 链接 B. Equalize 题意 给一个数组\(a\),然后让你给这个数组加上一个排列,求出现最多的次数 题解 赛时没过不应该. 最开始很容易想到要去重,因 ...

  10. html5与css3新特性

    HTML5新特性 增加了一些新的标签.新的表单以及新的表单属性等 这些新特性都有兼容性问题,基本上IE9+以上版本浏览器才支持,如果不考虑兼容性问题,可以大量使用这些新特性 新增语义化标签 - < ...