对于一个数列 \(<a_n>\),定义其指数型生成函数(EGF)\(\hat{a}(x)=\displaystyle\sum_{n\ge 0}\dfrac{a_n}{n!}x^n\)。

例,排列数 \(p_i=i!\) 的 EGF:\(\hat{p}(x)=\displaystyle\sum_{n\ge 0}\dfrac{p_n}{n!}x^n=\sum_{n\ge 0}x^n=\dfrac{1}{1-x}\)。(最后一步错位相减)

圆排列 \(q_i=(i-1)!\) 的 EGD:\(\hat{q}(x)=\displaystyle\sum_{n\ge 1}\dfrac{(n-1)!}{n!}x^n=\sum_{n\ge 1}\dfrac{x^n}{n}=\ln \dfrac{1}{1-x}\)。

我们发现 \(\hat{p}(x)=\exp(\hat{q}(x))\)!

\(\exp(f(x))=\displaystyle\sum_{i\ge 0}\dfrac{f(x)^i}{i!}\),这是一个复合函数。

定理:若 \(<a_n>\) 的 EGF 为 \(\hat{A}(x)\),\(<b_n>\) 的 EGF 为 \(\hat{B}(x)\),\(<c_n>\) 的 EGF 为 \(\hat{C}(x)\),则 \(c_n=\displaystyle\sum_{i+j=n}(^n_i)a_ib_j\)。即 \(c\) 是 \(a,b\) 的二项式卷积结果。

【应用】

EGF 常用于计数对象的拼接。

  1. \(n\) 个点恰好组成一棵树的方案数 \(t_n=n^{n-2}\)。(Cayley 公式)

  2. \(n\) 个点恰好组成一个圈(禁止重边自环)的方案数 \(c_n=\begin{cases}(n-1)!/2&n>2\\0&n\le 2\end{cases}\)

组合问题:\(n\) 个点恰好组成一棵树和一个圈的方案数 \(a_n\) 是多少?

\(a_n=\sum_{i=0}^nC_{n}^it_ic_{n-i}\),即从 \(n\) 个点里选若干个点组成树,其余的组成圈。

发现 \(a_n\) 就是 \(t_n,c_n\) 的二项式卷积,所以 \(a_n\) 的 EGF 等于 \(t_n,c_n\) 的 EGF 乘积。

EGF:指数型生成函数的更多相关文章

  1. 指数型生成函数(EGF)学习笔记

    之前,我们学习过如何使用生成函数来做一些组合问题(比如背包问题),但是它面对排列问题(有标号)的时候就束手无策了. 究其原因,是因为排列问题的递推式有一些系数(这个待会就知道了),所以我们可以修改一下 ...

  2. 指数型生成函数 及 多项式求ln

    指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...

  3. hdu 1521 排列组合 —— 指数型生成函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1521 标准的指数型生成函数: WA了好几遍,原来是多组数据啊囧: 注意精度,直接强制转换(int)是舍去小 ...

  4. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  5. poj 3734 Blocks【指数型生成函数】

    指数型生成函数,推一推可得: \[ (1+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...)^2+(1+\frac{x^2}{2!}+\frac{x^4 ...

  6. hdu 1521 排列组合【指数型生成函数】

    根据套路列出式子:\( \prod_{i=1}^{n}\sum_{j=0}^{c[i]}\frac{x^j}{j!} \),然后暴力展开即可 #include<iostream> #inc ...

  7. 多项式&生成函数(~~乱讲~~)

    多项式 多项式乘法 FFT,NTT,MTT不是前置知识吗?随便学一下就好了(虽然我到现在还是不会MTT,exlucas也不会用) FTT总结 NTT总结 泰勒展开 如果一个多项式\(f(x)\)在\( ...

  8. 【杂题】[LibreOJ 2541] 【PKUWC2018】猎人杀【生成函数】【概率与期望】

    Description 猎人杀是一款风靡一时的游戏"狼人杀"的民间版本,他的规则是这样的: 一开始有 n个猎人,第 i 个猎人有仇恨度 wi.每个猎人只有一个固定的技能:死亡后必须 ...

  9. 2020省选模拟训练1 排列(perm)多项式exp+EGF

    这道题真的还是简单的一批..... 我当时要是参加考试的话该多好(凭这一道题就能进前 5 了) 十分显然的指数型生成函数. 令 $f[i]$ 表示有 $i$ 个点的答案. 然后显然有 $f[i]=\s ...

  10. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

随机推荐

  1. C#多曲线数据分析

    数据如下 统计效果图如下 程序初始化 private void Form1_Load(object sender, EventArgs e) { using (SqlConnection con = ...

  2. JUC包常用类原理

    放眼望去,java.util.concurrent包下类大致包括:atomic 原子类.锁.并发集合.线程池.工具类.我们挑重要的了解一下. Atomic 原子类 Java针对并发编程已经有了各种锁, ...

  3. 针对docker中的mongo容器增加鉴权

    1. 背景 业务方的服务器经安全检查,发现以docker容器启动的mongo未增加鉴权的漏洞,随优化之 2. 配置 mongo以docker compose方式启动,镜像的版本号为4.2.6,dock ...

  4. Oracle建立索引前后性能比较

    1.SQL语句 create table C##HR.t_noindex as select * from all_objects; create table C##HR.t_indexed as s ...

  5. html - 多次点击选中页面文字出现蓝色背景的解决方法

    body{ -moz-user-select: none; /*火狐*/ -webkit-user-select: none; /*webkit浏览器*/ -ms-user-select: none; ...

  6. [转帖]WinXP添加TLS1.1、TLS1.2支持

    现象 HTTPS服务在Win7及Win10能够正常打开,但是在XP下用IE浏览器却无法打开,XP下用第三方浏览器(我试了谷歌浏览器)却能正常打开.经过抓包分析,用IE浏览器是协商用的是TLS1而用第三 ...

  7. [转帖]TiKV Control 使用说明

    https://docs.pingcap.com/zh/tidb/stable/tikv-control TiKV Control(以下简称 tikv-ctl)是 TiKV 的命令行工具,用于管理 T ...

  8. [转帖]关于Linux操作系统中LUN的队列深度(queue_depth)

    Linux中的queue_depth(队列深度),可以用lsscsi查看. 不过今天在我的vm 虚拟机环境中(无外界存储),是没有lsscsi命令. 不过,从网上,搜到了如下的信息: $ lsscsi ...

  9. [转帖]linux下如何避免rsyslog系统日志不停打印到console

    背景:linux环境下,服务器由于某种异常导致rsyslog message不停打印到console控制台,影响我们正常使用. ps:我遇见的场景: 解决办法:1. vim /etc/rsyslog. ...

  10. [转帖]Windows自带硬盘测试工具使用教程

    本教程主要讲解Windows自带的硬盘测试工具的使用,不用再安装第三方软件了.到底准不准就不知道啦,下面我们来看看如何使用吧~ 1. 进入cmd 快速进入cmd 主要如果进入后,使用命令直接闪退,就是 ...