ABC317题解报告
我直接从第三题开始讲了。
把数组 \(A\) 从大到小排序。
然后从前往后把前 \(q\) 个数加起来,然后判断这 \(q\) 个数的和与 \(d\) 的大小关系,如果大了就变成 \(d\)。
然后有些细节就看代码吧。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 2e5 + 10;
int n,d,p;
int a[maxn];
int cnt,sum;
bool cmp(int a,int b)
{
return a > b;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n >> d >> p;
int ans = 0;
for(int i = 1;i <= n;i++)
{
cin >> a[i];
ans += a[i];
}
sort(a + 1,a + n + 1,cmp);
for(int i = 1;i <= n;i++)
{
sum += a[i];
cnt++;
if(cnt >= d && sum <= p)
{
break;
}
if(cnt == d)
{
if(sum >= p)
{
cnt = 0;
ans -= sum - p;
sum = 0;
}
}
}
if(sum >= p)
{
ans -= sum - p;
}
cout << ans;
return 0;
}
看到 \(n \le 16\),想到状压 DP。
然后就没有然后了, DP式就是很普通的 DP 式。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,ans = -1e9;
int d[20][20];
int dp[1 << 17];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n;
for(int i = 0;i < n;i++)
{
for(int j = 0;j < n;j++)
{
if(i != j && i < j)
cin >> d[i][j];
}
}
for(int i = 0;i < (1 << n);i++)
{
for(int j = 0;j < n;j++)
{
if(!(i & (1 << j)))
{
continue;
}
for(int k = j + 1;k < n;k++)
{
if(!(i & (1 << k)))
{
continue;
}
int befor = i xor (1 << j) xor (1 << k);
dp[i] = max(dp[befor] + d[j][k],dp[i]);
}
}
}
for(int i = 0;i < (1 << n);i++)
{
ans = max(ans,dp[i]);
// cout << dp[i] << " " << i << '\n';
}
cout << ans;
return 0;
}
/*
16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1
1
*/
有很多种方法。
比如liangbowen先生说的:e你直接从后往前枚举 i 不就做完了。
谔谔,大家的方法都比我高级。
我是直接容斥。
首先先算出以这个点为 \(k\) 的组数并且忽略第二条。
然后减去 \(a_i = a_j = a_k\) 的情况即可。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 3e5 + 10;
int n,ans;
int cnt[maxn],sum[maxn];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n;
for(int i = 1;i <= n;i++)
{
int x;
cin >> x;
ans += cnt[x] * (i - 1) - sum[x];
sum[x] += i;
cnt[x]++;
}
for(int i = 1;i <= n;i++)
{
ans -= cnt[i] * (cnt[i] - 1) * (cnt[i] - 2) / 6;
}
cout << ans;
return 0;
}
但是呢,你有可能对 ans += cnt[x] * (i - 1) - sum[x]; 有疑问,我们画个图就知道了。

每个物品搭配每只脚,能不能取到临界值组成的 \(2n^2\) 个点。
那么暴力判断每个点行不行。
然后判断每个关键点之后的一个点可不可以,可以的话那整个闭区间就可以。
// LUOGU_RID: 123641746
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 210;
int n,cnt,ans,a[maxn],b[maxn];
int c[maxn * maxn * 2],tmp[maxn];
int X;
bool cmp(int x,int y)
{
return abs(x - X) < abs(y - X);
}
bool check(int x)
{
X = x;
for(int i = 1;i <= n;i++)
{
tmp[i] = a[i];
}
sort(tmp + 1,tmp + n + 1,cmp);
for(int i = 1;i <= n;i++)
{
if(tmp[i] < x - b[i] || tmp[i] > x + b[i])
{
return 0;
}
}
return 1;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n;
for(int i = 1;i <= n;i++)
{
cin >> a[i];
}
for(int i = 1;i <= n;i++)
{
cin >> b[i];
}
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= n;j++)
{
c[++cnt] = a[i] - b[j];
c[++cnt] = a[i] + b[j];
}
}
sort(c + 1,c + cnt + 1);
cnt = unique(c + 1,c + cnt + 1) - c - 1;
for(int i = 1;i <= cnt;i++)
{
if(check(c[i]))
{
ans++;
}
}
for(int i = 1;i < cnt;i++)
{
if(check(c[i] + 1))
{
ans += c[i + 1] - c[i] - 1;
}
}
cout << ans;
return 0;
}
ABC317题解报告的更多相关文章
- 2015浙江财经大学ACM有奖周赛(一) 题解报告
2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...
- cojs 强连通图计数1-2 题解报告
OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...
- cojs 二分图计数问题1-3 题解报告
OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...
- 题解报告:hdu 1398 Square Coins(母函数或dp)
Problem Description People in Silverland use square coins. Not only they have square shapes but also ...
- 题解报告:hdu 2069 Coin Change(暴力orDP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...
- 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)
Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...
- CF Educational Round 78 (Div2)题解报告A~E
CF Educational Round 78 (Div2)题解报告A~E A:Two Rival Students 依题意模拟即可 #include<bits/stdc++.h> us ...
- CF1169(div2)题解报告
CF1169(div2)题解报告 A 不管 B 首先可以证明,如果存在解 其中必定有一个数的出现次数大于等于\(\frac{m}{2}\) 暴力枚举所有出现次数大于等于$\frac{m}{2} $的数 ...
- CFEducational Codeforces Round 66题解报告
CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...
- CF Round #580(div2)题解报告
CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...
随机推荐
- 【Oracle】lpad与rpad函数,从左边对字符串使用指定的字符进行填充将1变成000001
[Oracle]lpad&rpad函数,从左边对字符串使用指定的字符进行填充将1变成000001 lpad与rpad函数 顾名思义,lpad是从左边开始进行填充,rpad是从右边开始进行填充 ...
- 深入理解高级加密标准(Advanced Encryption Standard)
title: 深入理解高级加密标准(Advanced Encryption Standard) date: 2024/4/23 20:04:36 updated: 2024/4/23 20:04:36 ...
- 殷浩详解DDD:如何避免写流水账代码?
简介: 在日常工作中我观察到,面对老系统重构和迁移场景,有大量代码属于流水账代码,通常能看到开发在对外的API接口里直接写业务逻辑代码,或者在一个服务里大量的堆接口,导致业务逻辑实际无法收敛,接口复用 ...
- "友链"
欢迎来到我的友链小屋 展示本站所有友情站点,排列不分先后,均匀打乱算法随机渲染的喔! 友链信息 博客名称:麋鹿鲁哟博客网址:https://www.cnblogs.com/miluluyo/博客头 ...
- UCenter 1.6 数据字典
uc_admins 管理员权限表 字段名 数据类型 默认值 允许非空 自动递增 备注 uid mediumint(8) unsigned NO 是 用户ID username char(15) ...
- k8s问题解决
问题1: 问题描述:k8s中Terminating状态pod不能删除 [root@master ~]# kubectl get pods -n ms NAME READY STATUS RESTART ...
- EasyRepro与测试自动化( 一) 概览
EasyRepro是一个框架,允许在特定的Dynamics 365组织上执行自动化UI测试.你可以使用它来自动化冒烟测试.回归测试和负载测试等.该框架是由开源项目Selenium构建的,Seleniu ...
- Competition Set - 2023杭电多校
关于代码太多导致太卡然后发现刚好可以放下HDU多校这回事. 那就稍微加点经历吧.team316. 第十场 今天发挥还行. 上来开03,一发过.然后做09,感觉就不难,过之.发现11是数学题,干,想了2 ...
- 源码安装expect
1. yum安装expect 如果有外网,可以yum安装,如下: yum install expect 2.源码安装expect 下载tcl源码包 cd /tmp &&wget htt ...
- 利用神经网络对脑电图(EEG)降噪------开源的、低成本、低功耗微处理器神经网络模型解决方案
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 这个示例展示了如何使用EEGdenoiseNet基准数据集[1]和深度学习回归去除脑电图(EEG ...