遥感图像处理学习(6)


前言

遥感系列第6篇。遥感图像处理方向的学习者可以参考或者复刻

本文初编辑于2023年12月16日

2024年1月24日搬运至本人博客园平台


文章标题:Сrор field boundary detection: approaches and main challenges

文章地址:https://medium.com/geekculture/%D1%81r%D0%BE%D1%80-field-boundary-detection-approaches-and-main-challenges-46e37dd276bc

文章所涉及的代码:无


这篇文章着眼于农田边界检测,是文章作者对多篇论文的简单介绍和总结。

文章提到,现有的土地使用情况图是基于历史行政地图或基于观测数据手工开发的。前者精度不高,后者需要大量人力。作物田边界检测问题是一个多领域问题,尽管已经有许多解决方案,但仍在开发中。

经典CV边界检测方法:

Boundary Delineation of Agricultural Fields in Multitemporal Satellite Imagery

https://www.researchgate.net/publication/329817494_Boundary_Delineation_of_Agricultural_Fields_in_Multitemporal_Satellite_Imagery

研究人员的目标是开发一种算法,从卫星图像中检测新西兰农田的边界。

算法对春季拍摄的图像有效,而对秋季拍摄的图像则不能提供很好的效果。

经典机器学习边界检测方法:

A machine learning approach for agricultural parcel delineation through agglomerative segmentation

https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1278312

研究小组通过计算指标得到图像,进而得到超像素、像素簇和特征图,通过RUSboost分类器进行像素分类。

图的等高线方法:

Extracting Agricultural Fields from Remote SensingImagery Using Graph-Based Growing Contours

https://www.researchgate.net/publication/340534499_Extracting_Agricultural_Fields_from_Remote_Sensing_Imagery_Using_Graph-Based_Growing_Contours

研究人员在划定轮廓前进行了一系列的变换,特别是双线性滤波、使用YUV和RGB颜色空间之间的颜色空间变换来采用梯度寻找局部各向异性。论文作者提到靠近城市边界的土地容易被误判,建议过滤掉城市结构。

CNN方法:

Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network

论文使用ResUNet网络和Sentinel-2数据集,使用RGB和进红外波段图像。

研究人员为了将基于区域和基于边缘的检测相结合,研究人员将场边界标记为一个类,将整个区域标记为另一类。后面发现使用UNet++效果更好,故猜测进红外波段图像是不必要的。

CNN边界检测方法:

Detection, Classification and Boundary Regularization of Buildings in Satellite Imagery Using Faster Edge Region Convolutional Neural Networks

https://www.mdpi.com/2072-4292/12/14/2240/htm

训练一个Mask R-CNN再结合一个mini-network网络就是RPN(Region Proposal Network)模型了,研究人员发现FER-CNN(Faster Edge Region CNN)更有效。

FER-CNN在特征图的多个分辨率上分析区域,一个特征图可以减少2、4或8倍,创建区域方案,选择那些在多个尺度上达成一致的区域。

剑走偏锋的方法:

Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

https://www.researchgate.net/publication/314729725_Hierarchical_graph-based_segmentation_for_extracting_road_networks_from_high-resolution_satellite_images

把农田边界划分视为道路检测的副产品,但是农田边界和道路不一样,农田边界不全是直的。


对文章所涉及的代码的说明(全文无代码)


遥感图像处理笔记之【Сrор field boundary detection: approaches and main challenges】的更多相关文章

  1. 基于纹理边缘抑制的轮廓和边界检测(Contour and Boundary Detection)

    基于纹理边缘抑制的轮廓和边界检测(Contour and Boundary Detection) kezunhai@gmail.com http://blog.csdn.net/kezunhai 一幅 ...

  2. [Object Tracking] Deep Boundary detection Tech

    AR的要点之一便是精确跟踪 From: https://zhuanlan.zhihu.com/p/26848831?refer=dlclass Boundary Detection Benchmark ...

  3. 【图像处理笔记】SIFT算法原理与源码分析

    [图像处理笔记]总目录 0 引言 特征提取就是从图像中提取显著并且具有可区分性和可匹配性的点结构.常见的点结构一般为图像内容中的角点.交叉点.闭合区域中心点等具有一定物理结构的点,而提取点结构的一般思 ...

  4. JAVA进阶之旅(二)——认识Class类,反射的概念,Constructor,Field,Method,反射Main方法,数组的反射和实践

    JAVA进阶之旅(二)--认识Class类,反射的概念,Constructor,Field,Method,反射Main方法,数组的反射和实践 我们继续聊JAVA,这次比较有意思,那就是反射了 一.认识 ...

  5. GDAL 遥感图像处理后的数据保存为图像文件的实现方法

    在遥感图像处理中,GDAL库不仅能读取和处理大部分的遥感图像数据,而且还能够实现图像处理后将数据保存为图像的功能. 本文就详细介绍如何将内存中的图像数据保存为.tif格式. 首先,遥感数据处理完,保存 ...

  6. 数字图像处理笔记与体会(一)——matlab编程基础

    最近开始学习数字图像处理,使用matlab实现,下面我就来记录笔记和体会,一方面是给大家提供参考,另一方面是防止我忘记了. 复习一下: 1.数字图像是用一个数字矩阵来表示的,数字阵列中的每个数字,表示 ...

  7. 图像处理笔记(二十一):halcon在图像处理中的运用

    概要: 分水岭算法做图像分割 二维码识别 稍后将其他几篇笔记全都补充上概要方便查询. 分水岭算法做图像分割 使用距离变换结合分水岭算法实现图像分割,可以用来分割仅通过阈值分割还是有边缘连接在一起的情况 ...

  8. C#图像处理笔记

    1.灰度拉伸 灰度拉伸又叫对比度拉伸,它是最基本的一种灰度变换,使用的是最简单的分段线性变换函数,它的主要思想是提高图像处理时灰度级的动态范围.

  9. 论文笔记--PCN:Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

    关键词:rotation-invariant face detection, rotation-in-plane, coarse-to-fine 核心概括:该篇文章为中科院计算所智能信息处理重点实验室 ...

  10. laravel 的 intervention-image 图像处理笔记

    安装: https://blog.csdn.net/beyond__devil/article/details/62230610 需求: PHP >= 5.4 Fileinfo 扩展 GD库 & ...

随机推荐

  1. 0x62 图论-最小生成树

    A题:走廊泼水节 链接:https://ac.nowcoder.com/acm/contest/1056/A 题目描述 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小 ...

  2. Python日常学习

    学习算法和数据结构之余开始接触python,目前正在学习语法部分,这篇blog记录下一些知识点和放一些文档 or 教程的传送门. 文档网站 Python 解释器内置函数 Python速成 from O ...

  3. InnoDB 事务加锁分析

    本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/S7MhlsZveBHRSQhq5aTIJA作者:何志创 一般大家对数据库事务的了解可能停留在事 ...

  4. <vue 路由 7、导航守卫>

    导航守卫 一.     知识点 1.什么是导航守卫? (1)vue-router提供的导航守卫主要用来监听路由的进入和离开. (2)vue-router提供了beforeEach和afterEach的 ...

  5. px2vw一个px单位转成vw单位的VSCode插件

    px2vw 一个 px 单位转成 vw 单位的 VSCode 插件

  6. ASP.NET Core 5.0 MVC 页面标记帮助程序的使用

    什么是标记帮助程序 标记帮助程序使服务器端代码可以在 Razor 文件中参与创建和呈现 HTML 元素.标记帮助程序使用 C# 创建,基于元素名称.属性名称或父标记以 HTML 元素为目标. 创建标记 ...

  7. VS中多个源文件中只运行其中特定文件

    1.问题 有时候一个项目中创建了多个源文件,但是我只想运行其中的一个,一起运行就会出现多个main入口的问题 2.解决方式 2.1 右键要排除的文件,点击属性 2.2 从生成中排除一项中选择是即可 2 ...

  8. [STM32H7] 实战技能分享,如何让工程代码各种优化等级通吃,含MDK AC5,AC6,IAR和GCC

    引出问题:    一个好的工程项目代码,特别是开源类的,如果能做到各种优化等级通吃,是一种非常好的工程案例,这样别人借鉴的时候,可以方便的适配到自己工程里.但实际项目中,针对一款产品代码,我们一般不会 ...

  9. java - 标准类的定义

    一个标准的类需要拥有下面 4个 组成部分: 1. 所有的成员变量都要使用 private 关键字进行修饰 2. 为每一个成员变量编写 set.get 方法 3. 创建一个无参数的构造方法 4. 创建一 ...

  10. CSS : 使用 z-index 的前提

    使用 z-index 前  , 需要将元素 定位设置为  position : relative .