Softmax偏导及BP过程的推导
Softmax求导
其实BP过程在pytorch中可以自动进行,这里进行推导只是强迫症
A
Apart证明softmax求导和softmax的BP过程
本来像手打公式的,想想还是算了,引用部分给出latex公式说明。
A.1
softmax导数

A.2
softmax梯度下降

B
基本上都是拾人牙慧,在此给出引用和参考。
参考:
\(引用几个定理B.15和B.16\)
\((B.15)\)
\begin{aligned}
& \vec{x} \in k^{M \times 1}, y \in R, \vec{z} \in R^{N \times 1},\quad 则: \\
& \frac{\partial y \vec{z}}{\partial \vec{x}}=y \frac{\partial \vec{z}}{\partial \vec{x}}+\frac{\partial y}{\partial \vec{x}} \cdot \vec{z}^{\top} \in R^{M \times N}
\end{aligned}
\]
& \text{[证明]:} \\
& dy\vec{z} \\
& =d y \cdot \vec{z}+y \cdot d \vec{z} \\
&=\vec{z} \cdot d y+y \cdot d \vec{z} \\
&=\vec{z} \cdot \left(\frac{\partial y}{\partial \vec{x}}\right)^{\top} d \vec{x}+y \cdot\left(\frac{\partial \vec{z}}{\partial \vec{x}}\right)^{\top} d \vec{x} \\
& \therefore \frac{\partial y \vec{z}}{\partial \vec{x}}=y \cdot \frac{\partial \vec{z}}{\partial \vec{x}}+\frac{\partial y}{\partial \vec{x}} \cdot \vec{z}^{\top}
\end{aligned}
\]
\((B.26)\)
& \vec{x} \in R^N, \quad \vec{f}(\vec{x})=\left[f\left(x_1\right), f\left(x_2\right) \ldots f\left(x_n\right)\right] \in R^N, 则 \\
& \frac{\partial \vec{f}(\vec{x})}{\partial \vec{x}}=\operatorname{diag}\left(\vec{f}^{\prime}(\vec{x})\right)
\end{aligned}
\]
& \text { [证明]: }
\frac{\partial \vec{f}(\vec{x})}{\partial \vec{x}}=\left[\begin{array}{cccc}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial \eta_n} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial x_n} & \cdots & -\frac{\partial f_n}{\partial x_n}
\end{array}\right]=\left[\begin{array}{llll}
f^{\prime}\left(x_1\right) & & \\
& f^{\prime}\left(x_2\right) & & \\
& & \ddots & \\
& & & f^{\prime}\left(x_n\right)
\end{array}\right]=\operatorname{diag}\left(\vec{f}^{\prime}(\vec{x})\right)
\end{aligned}
\]
\(Apart中必须说明的两个推导:\)
\((1)\)
& \vec{x} \in R^n, \exp (\vec{x})=\left[\begin{array}{c}
\exp \left(x_1\right) \\
\vdots \\
\exp \left(x_n\right)
\end{array}\right] \in R^n\\
& 故存在偏导:\frac{\partial \exp (\vec{x})}{\partial \vec{x}}=\left[\begin{array}{ccc}
\frac{\partial \exp \left(x_1\right)}{\partial x_1} & \cdots & \frac{\partial \exp \left(x_n\right)}{\partial x_1} \\
\vdots & & \\
\frac{\partial \exp \left(x_1\right)}{\partial x_n} & \cdots & \frac{\partial \exp \left(x_n\right)}{\partial x_n}
\end{array}\right]=\operatorname{diag}(\exp (\vec{x}))
\end{aligned}
\]
\((2)\)
& d\vec{1}^{\top} \exp (\vec{x}) \\
& =\vec{1}^{\top} d \exp (\vec{x}) \\
&=\vec{1}^{\top}\left(\exp ^{\prime}(\vec{x}) \odot d \vec{x}\right) \\
&=\left(\vec{1} \odot \exp ^{\prime}(\vec{x})\right)^{\top} d \vec{x} \\
& \text { 有: } \frac{\partial \vec{1}^{\top} \exp (\vec{x})}{\partial \vec{x}}=\vec{1} \odot \exp ^{\prime}(\vec{x})=\exp ^{\prime}(\vec{x})=\exp (\vec{x})
\end{aligned}
\]
C
理解可能有偏颇。
Softmax偏导及BP过程的推导的更多相关文章
- 【机器学习】BP & softmax求导
目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向 根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0) ...
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...
- Andrew BP 神经网络详细推导
Lec 4 BP神经网络详细推导 本篇博客主要记录一下Coursera上Andrew机器学习BP神经网络的前向传播算法和反向传播算法的具体过程及其详细推导.方便后面手撸一个BP神经网络. 目录 Lec ...
- Logistic回归计算过程的推导
https://blog.csdn.net/ligang_csdn/article/details/53838743 https://blog.csdn.net/weixin_30014549/art ...
- 矩阵的f范数及其求偏导法则
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
- BP神经网络算法推导
目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 ...
- MathType二次偏导怎么表示
求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...
- Spark Mllib里的协调过滤的概念和实现步骤、LS、ALS的原理、ALS算法优化过程的推导、隐式反馈和ALS-WR算法
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 (广泛采用) 协调过滤的概念 在现今的推荐技术和算法中,最被大家广泛认可和 ...
- softmax求导、cross-entropy求导及label smoothing
softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i, 1 如果ji, 2 cross-e ...
随机推荐
- 一键在线获取APP公钥、包名、签名及备案信息方法介绍
目录 一键在线获取APP公钥.包名.签名及备案信息方法介绍 摘要 引言 一键获取APP包信息 操作步骤 编辑 解析报告 总结 致谢 关键词 参考资料 声明 摘要 本文介绍了一款在线APP解析工具 ...
- 拥抱开放,Serverless 时代的下一征程
Serverless 作为云计算的最佳实践和未来演进趋势,其全托管免运维的使用体验和按量付费的成本优势使得它在云原生时代备受推崇.Serverless 的使用场景也由事件驱动,数据处理等部分特定场景转 ...
- mysql关于time时间戳相关使用
1.当前时间: select now(); 应用: select * from game where time > now(); 2.时间的偏移: 向前偏移10天: select date_su ...
- shell脚本(7)-shell运算
文档目录: 一.算数运算符 二.关系运算符 三.布尔运算符 四.逻辑运算符 五.字符串运算符 六.文件测试运算符 算术运算符 下表列出了常用的算术运算符,假定变量 a 为 10,变量 b 为 20: ...
- java进阶(7)--Object类-toString()/equals()/finalize()/hashCode()
一.object类介绍 object类这个老祖宗中的方法,所有子类通用,直接或间接继承. 学习常用方法即可 列表 prtected object clone() //对象克隆 ...
- Linux 常见重要系统文件
Linux 常见重要系统文件 目录 Linux 常见重要系统文件 网卡配置文件 文件内容举例: DNS配置文件 文件内容举例: 系统hosts文件 文件内容举例: fstab文件 文件内容举例: rc ...
- uniapp 子页面 滚动监听 是否到底
主要属性: handleScrollToLower <template> <view class="menu"> <scroll-view id=& ...
- [转帖]@Scope("prototype")的正确用法——解决Bean的多例问题
https://www.jianshu.com/p/54b0711a8ec8 1. 问题,Spring管理的某个Bean需要使用多例 在使用了Spring的web工程中,除非特殊情况,我们都会选择 ...
- [转帖]内存管理参数zone_reclaim_mode分析
zone_reclaim_mode 官方解释 调整方法 调整的影响 官方解释 最近在性能优化,看到了zone_reclaim_mode参数,记录备用 zone_reclaim_mode: Zone_r ...
- [转帖]TiUP Cluster 命令合集
https://docs.pingcap.com/zh/tidb/stable/tiup-component-cluster TiUP Cluster 是 TiUP 提供的使用 Golang 编写的集 ...