Softmax偏导及BP过程的推导
Softmax求导
其实BP过程在pytorch中可以自动进行,这里进行推导只是强迫症
A
Apart证明softmax求导和softmax的BP过程
本来像手打公式的,想想还是算了,引用部分给出latex公式说明。
A.1
softmax导数

A.2
softmax梯度下降

B
基本上都是拾人牙慧,在此给出引用和参考。
参考:
\(引用几个定理B.15和B.16\)
\((B.15)\)
\begin{aligned}
& \vec{x} \in k^{M \times 1}, y \in R, \vec{z} \in R^{N \times 1},\quad 则: \\
& \frac{\partial y \vec{z}}{\partial \vec{x}}=y \frac{\partial \vec{z}}{\partial \vec{x}}+\frac{\partial y}{\partial \vec{x}} \cdot \vec{z}^{\top} \in R^{M \times N}
\end{aligned}
\]
& \text{[证明]:} \\
& dy\vec{z} \\
& =d y \cdot \vec{z}+y \cdot d \vec{z} \\
&=\vec{z} \cdot d y+y \cdot d \vec{z} \\
&=\vec{z} \cdot \left(\frac{\partial y}{\partial \vec{x}}\right)^{\top} d \vec{x}+y \cdot\left(\frac{\partial \vec{z}}{\partial \vec{x}}\right)^{\top} d \vec{x} \\
& \therefore \frac{\partial y \vec{z}}{\partial \vec{x}}=y \cdot \frac{\partial \vec{z}}{\partial \vec{x}}+\frac{\partial y}{\partial \vec{x}} \cdot \vec{z}^{\top}
\end{aligned}
\]
\((B.26)\)
& \vec{x} \in R^N, \quad \vec{f}(\vec{x})=\left[f\left(x_1\right), f\left(x_2\right) \ldots f\left(x_n\right)\right] \in R^N, 则 \\
& \frac{\partial \vec{f}(\vec{x})}{\partial \vec{x}}=\operatorname{diag}\left(\vec{f}^{\prime}(\vec{x})\right)
\end{aligned}
\]
& \text { [证明]: }
\frac{\partial \vec{f}(\vec{x})}{\partial \vec{x}}=\left[\begin{array}{cccc}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial \eta_n} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial x_n} & \cdots & -\frac{\partial f_n}{\partial x_n}
\end{array}\right]=\left[\begin{array}{llll}
f^{\prime}\left(x_1\right) & & \\
& f^{\prime}\left(x_2\right) & & \\
& & \ddots & \\
& & & f^{\prime}\left(x_n\right)
\end{array}\right]=\operatorname{diag}\left(\vec{f}^{\prime}(\vec{x})\right)
\end{aligned}
\]
\(Apart中必须说明的两个推导:\)
\((1)\)
& \vec{x} \in R^n, \exp (\vec{x})=\left[\begin{array}{c}
\exp \left(x_1\right) \\
\vdots \\
\exp \left(x_n\right)
\end{array}\right] \in R^n\\
& 故存在偏导:\frac{\partial \exp (\vec{x})}{\partial \vec{x}}=\left[\begin{array}{ccc}
\frac{\partial \exp \left(x_1\right)}{\partial x_1} & \cdots & \frac{\partial \exp \left(x_n\right)}{\partial x_1} \\
\vdots & & \\
\frac{\partial \exp \left(x_1\right)}{\partial x_n} & \cdots & \frac{\partial \exp \left(x_n\right)}{\partial x_n}
\end{array}\right]=\operatorname{diag}(\exp (\vec{x}))
\end{aligned}
\]
\((2)\)
& d\vec{1}^{\top} \exp (\vec{x}) \\
& =\vec{1}^{\top} d \exp (\vec{x}) \\
&=\vec{1}^{\top}\left(\exp ^{\prime}(\vec{x}) \odot d \vec{x}\right) \\
&=\left(\vec{1} \odot \exp ^{\prime}(\vec{x})\right)^{\top} d \vec{x} \\
& \text { 有: } \frac{\partial \vec{1}^{\top} \exp (\vec{x})}{\partial \vec{x}}=\vec{1} \odot \exp ^{\prime}(\vec{x})=\exp ^{\prime}(\vec{x})=\exp (\vec{x})
\end{aligned}
\]
C
理解可能有偏颇。
Softmax偏导及BP过程的推导的更多相关文章
- 【机器学习】BP & softmax求导
目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向 根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0) ...
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...
- Andrew BP 神经网络详细推导
Lec 4 BP神经网络详细推导 本篇博客主要记录一下Coursera上Andrew机器学习BP神经网络的前向传播算法和反向传播算法的具体过程及其详细推导.方便后面手撸一个BP神经网络. 目录 Lec ...
- Logistic回归计算过程的推导
https://blog.csdn.net/ligang_csdn/article/details/53838743 https://blog.csdn.net/weixin_30014549/art ...
- 矩阵的f范数及其求偏导法则
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
- BP神经网络算法推导
目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 ...
- MathType二次偏导怎么表示
求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...
- Spark Mllib里的协调过滤的概念和实现步骤、LS、ALS的原理、ALS算法优化过程的推导、隐式反馈和ALS-WR算法
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 (广泛采用) 协调过滤的概念 在现今的推荐技术和算法中,最被大家广泛认可和 ...
- softmax求导、cross-entropy求导及label smoothing
softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i, 1 如果ji, 2 cross-e ...
随机推荐
- vue tabBar导航栏设计实现4-再次抽取MainTabBar
系列导航 一.vue tabBar导航栏设计实现1-初步设计 二.vue tabBar导航栏设计实现2-抽取tab-bar 三.vue tabBar导航栏设计实现3-进一步抽取tab-item 四.v ...
- 请问Sass/SCSS(with node-sass)和Sass/SCSS(with dart-sass)选哪个?
node-sass是自动编译实时的,dart-sass需要保存后才会生效. 如果您在Dart-VM内运行Dart-Sass,它的运行速度很快,但它表示可以编译为纯JS,dart-sass只是一个编译版 ...
- vue中class样式与内联样式
(1):style使用 <div class="score" :style="{ color: colorComputed(item.status) }" ...
- Liunx常用操作(六)-压缩与解压缩(打包/解包)
liunx上面的压缩与解压缩(打包/解包)有以下几种命令可以实现 源文件001.txt 如下: 一.zip 特点:方便的与Windows之间通用 打包命令: zip 001.zip 001.txt 解 ...
- 玛珍,玛珍,margin!
最近在整理巩固面试相关的资料,又看到了熟悉的老朋友:margin,当时觉得其读起来很亲切,现在又发现很多遗忘的知识点. 了解margin margin,译为"外边缘",在CSS作为 ...
- 如何使用单纯的`WebAssembly`
一般来说在.net core使用WebAssembly 都是Blazor ,但是Blazor渲染界面,.net core也提供单纯的WebAssembly这篇博客我将讲解如何使用单纯的WebAssem ...
- [转帖]Java 获取 Kafka 指定 topic 的消息总量
发表于 2020-11-29 分类于 Java , Apache , JavaClass , Kafka Valine: 0 Kafka Consumer API Kafka 提供了两套 API ...
- [转帖]crontab 定时任务,免交互式编写任务文件
https://www.jianshu.com/p/8eab68bcfc8e 正常添加定时任务是在命令行使用命令 crontab -ecrontab -e编写完的文件怎么找到?文件默认保存在/var/ ...
- [转帖]TiKV & TiFlash 加速复杂业务查询丨TiFlash 应用实践
返回全部 边城元元案例实践2022-08-02 复杂业务查询对于传统的关系型数据库来说是一种考验,而通过 TiKV 行存与 TiFlash 的列存结合使用就能很好地应对.本文根据 TUG 用户边城元元 ...
- 【转帖】【漏洞提示】MySQL8.0.29因重大bug官网已下架
前阵子,MySQL官网已经将 MySQL 8.0.29版本下架.据悉下架原因是由于MySQL 8.0.29 存在关于InnoDB解释器的重大Bug.而最新版本 8.0.30及以上的版本已修复此漏洞.各 ...