在自然语言处理领域,有一个常见且重要的任务就是文本相似度搜索。文本相似度搜索是指根据用户输入的一段文本,从数据库中找出与之最相似或最相关的一段或多段文本。它可以应用在很多场景中,例如问答系统、推荐系统、搜索引擎等。

比如,当用户在知乎上提出一个问题时,系统就可以从知乎上已有的回答中找出与该问题最匹配或最有价值的回答,并展示给用户。

要实现类似高效的搜索,我们需要使用一些特殊的数据结构和算法。其中,向量相似度搜索是一种在大规模数据搜索中表现优秀的算法。而Redis作为一种高性能的键值数据库,也可以帮助我们实现向量相似度搜索。今天我们就来体验一把,还请帮忙点个关注

猿惑豁

在开始学习如何使用Redis实现向量相似度搜索之前,需要了解向量及向量相似度搜索的基本知识和原理,以便更好地理解后面的内容。

什么是向量?

向量是数学、物理学和工程科学等多个自然科学中的基本概念,它是一个具有方向和长度的量,用于描述问题,如空间几何、力学、信号处理等。在计算机科学中,向量被用于表示数据,如文本、图像或音频。此外,向量还代表AI模型对文本、图像、音频、视频等非结构化数据的印象。

向量相似度搜索的基本原理

向量相似度搜索的基本原理是通过将数据集中的每个元素映射为向量,并使用特定相似度计算算法,如基于余弦相似度的、基于欧氏相似度或基于Jaccard相似度等算法,找到与查询向量最相似的向量。

Redis实现向量相似度搜索

了解原理后,我们开始来实现如何使用Redis实现向量相似度搜索。Redis允许我们在FT.SEARCH命令中使用向量相似度查询。使我们可以加载、索引和查询作为Redis哈希或JSON文档中字段存储的向量。

//相关文档地址

https://redis.io/docs/interact/search-and-query/search/vectors

1、Redis Search安装

关于Redis Search的安装和使用,此处不再赘述,如果您对此不熟悉,可以参考上一篇文章:

C#+Redis Search:如何用Redis实现高性能全文搜索

2、创建向量索引库

这里我们使用NRedisStack和StackExchange.Redis两个库来与Redis进行交互操作。

//创建一个Redis连接
static ConnectionMultiplexer mux = ConnectionMultiplexer.Connect("localhost");
//获取一个Redis数据库
static IDatabase db = mux.GetDatabase();
//创建一个RediSearch客户端
static SearchCommands ft = new SearchCommands(db, null);

在进行向量搜索之前,首先需要定义并创建索引,并指定相似性算法。

public static async Task CreateIndexAsync()
{
await ft.CreateAsync(indexName,
new FTCreateParams()
.On(IndexDataType.HASH)
.Prefix(prefix),
new Schema()
.AddTagField("tag")
.AddTextField("content")
.AddVectorField("vector",
VectorField.VectorAlgo.HNSW,
new Dictionary<string, object>()
{
["TYPE"] = "FLOAT32",
["DIM"] = 2,
["DISTANCE_METRIC"] = "COSINE"
}));
}

这段代码的意思是:

  • 使用了一个异步方法 ft.CreateAsync 来创建索引。它接受三个参数:索引名称 indexName,一个 FTCreateParams 对象和一个 Schema 对象;
  • FTCreateParams 类提供了一些参数选项,用于指定索引的参数。这里使用 .On(IndexDataType.HASH)  方法来指定索引数据类型为哈希,并使用 .Prefix(prefix)  方法来指定索引数据的前缀;
  • Schema 类用于定义索引中的字段和字段类型。这里定义了一个标签字段(tag field)用于区分过虑数据。定义了一个文本字段(text field)用于存储原始数据,以及一个向量字段(vector field)用于存储经原始数据转化后的向量数据;
  • 使用了 VectorField.VectorAlgo.HNSW 来指定向量算法为 HNSW(Hierarchical Navigable Small World)。还传递了一个字典对象,用于设置向量字段的参数。其中,键为字符串类型,值为对象类型。

目前Redis支持两种相似度算法:

HNSW分层导航小世界算法,使用小世界网络构建索引,具有快速查询速度和小内存占用,时间复杂度为O(logn),适用于大规模索引。

FLAT暴力算法,它对所有的键值对进行扫描,然后根据键值对的距离计算出最短路径,时间复杂度为O(n),其中n是键值对的数量。这种算法时间复杂度非常高,只适用于小规模的索引。

3、添加向量到索引库

索引创建后,我们将数据添加到索引中。

public async Task SetAsync(string docId, string prefix, string tag, string content, float[] vector)
{
await db.HashSetAsync($"{prefix}{docId}", new HashEntry[] {
new HashEntry ("tag", tag),
new HashEntry ("content", content),
new HashEntry ("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
});
}

SetAsync方法用于将一个具有指定文档ID、前缀、标签、内容及内容的向量存储到索引库中。并使用SelectMany()方法和BitConverter.GetBytes()方法将向量转换为一个字节数组。

4、向量搜索

Redis 支持两种类型的向量查询:KNN查询和Range查询,也可以将两种查询混合使用。

KNN 查询

KNN 查询用于在给定查询向量的情况下查找前 N 个最相似的向量。

public async IAsyncEnumerable<(string Content, double Score)> SearchAsync(float[] vector, int limit)
{
var query = new Query($"*=>[KNN {limit} @vector $vector AS score]")
.AddParam("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
.SetSortBy("score")
.ReturnFields("content", "score")
.Limit(0, limit)
.Dialect(2); var result = await ft.SearchAsync(indexName, query).ConfigureAwait(false);
foreach (var document in result.Documents)
{
yield return (document["content"],Convert.ToDouble(document["score"]));
}
}

这段代码的意思是:

  • 创建一个查询对象 query,并设置查询条件。查询条件包括:
    1. "*=>[KNN {limit} @vector $vector AS score]":使用KNN算法进行向量相似度搜索,限制结果数量为limit,使用给定的向量vector作为查询向量,将查询结果按照相似度得分进行排序;
    2. AddParam("vector", vector.SelectMany(BitConverter.GetBytes).ToArray()):将浮点数数组转换为字节数组,并将其作为查询参数传递给查询;
    3. SetSortBy("score"):按照相似度得分对结果进行排序;
    4. ReturnFields("content", "score"):将content和score两个字段从结果集中返回;
    5. Limit(0, limit):限制结果集的起始位置为0,结果数量为limit;
    6. Dialect(2):设置查询方言为2,即Redis默认的查询语言Redis Protocol;
  • 调用异步搜索方法 ft.SearchAsync(indexName, query),并等待搜索结果;
  • 遍历搜索结果集 result.Documents,将每个文档转换为 (string Content, double Score) 元组,并通过 yield 语句进行迭代返回。

Range 查询:

Range查询提供了一种根据 Redis 中的向量字段与基于某些预定义阈值(半径)的查询向量之间的距离来过滤结果的方法。类似于 NUMERIC 和 GEO 子句,可以在查询中多次出现,特别是可以和 KNN 进行混合搜索。

public static async IAsyncEnumerable<(string Tag, string Content, double Score)> SearchAsync(string tag, float[] vector, int limit)
{
var query = new Query($"(@tag:{tag})=>[KNN {limit} @vector $vector AS score]")
.AddParam("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
.SetSortBy("score")
.ReturnFields("tag", "content", "score")
.Limit(0, limit)
.Dialect(2); var result = await ft.SearchAsync(indexName, query).ConfigureAwait(false);
foreach (var document in result.Documents)
{
yield return (document["tag"], document["content"], Convert.ToDouble(document["score"]));
}
}

这段代码使用了KNN和Range混合查询,与上一段代码相比,新增了@tag参数,将限制结果仅包含给定标签的内容。这样做可以增加查询的准确性,提高查询效率。

5、从索引库中删除向量

public async Task DeleteAsync(string docId, string prefix)
{
await db.KeyDeleteAsync($"{prefix}{docId}");
}

这个方法通过删除与指定向量相关联的哈希缓存键,来实现从索引库中删除指定向量数据。

6、删除向量索引库

public async Task DropIndexAsync()
{
await ft.DropIndexAsync(indexName, true);
}

这个方法 await ft.DropIndexAsync接受两个参数: indexName 和 true 。indexName 表示索引库的名称, true 表示在删除索引时是否删除索引文件。

7、查询索引库信息

public async Task<InfoResult> InfoAsync()
{
return await ft.InfoAsync(indexName);
}

通过 await ft.InfoAsync(indexName) 方法,我们可以获取到指定索引库的大小,文档数量等相关索引库信息。

完整 Demo 如下:

using NRedisStack;
using NRedisStack.Search;
using NRedisStack.Search.DataTypes;
using NRedisStack.Search.Literals.Enums;
using StackExchange.Redis;
using static NRedisStack.Search.Schema; namespace RedisVectorExample
{
class Program
{
//创建一个Redis连接
static ConnectionMultiplexer mux = ConnectionMultiplexer.Connect("localhost");
//获取一个Redis数据库
static IDatabase db = mux.GetDatabase();
//创建一个RediSearch客户端
static SearchCommands ft = new SearchCommands(db, null);
//索引名称
static string indexName = "test:index";
//索引前缀
static string prefix = "test:data";
static async Task Main(string[] args)
{
//创建一个向量的索引
await CreateIndexAsync(); //添加一些向量到索引中
await SetAsync("1", "A", "测试数据A1", new float[] { 0.1f, 0.2f });
await SetAsync("2", "A", "测试数据A2", new float[] { 0.3f, 0.4f });
await SetAsync("3", "B", "测试数据B1", new float[] { 0.5f, 0.6f });
await SetAsync("4", "C", "测试数据C1", new float[] { 0.7f, 0.8f }); //删除一个向量
await DeleteAsync("4"); //KUN搜索
await foreach (var (Content, Score) in SearchAsync(new float[] { 0.1f, 0.2f }, 2))
{
Console.WriteLine($"内容:{Content},相似度得分:{Score}");
} //混合
await foreach (var (Tag, Content, Score) in SearchAsync("A", new float[] { 0.1f, 0.2f }, 2))
{
Console.WriteLine($"标签:{Tag},内容:{Content},相似度得分:{Score}");
} //检查索引是否存在
var info = await InfoAsync();
if (info != null)
await DropIndexAsync(); //存在则删除索引
} public static async Task CreateIndexAsync()
{
await ft.CreateAsync(indexName,
new FTCreateParams()
.On(IndexDataType.HASH)
.Prefix(prefix),
new Schema()
.AddTagField("tag")
.AddTextField("content")
.AddVectorField("vector",
VectorField.VectorAlgo.HNSW,
new Dictionary<string, object>()
{
["TYPE"] = "FLOAT32",
["DIM"] = 2,
["DISTANCE_METRIC"] = "COSINE"
}));
} public static async Task SetAsync(string docId, string tag, string content, float[] vector)
{
await db.HashSetAsync($"{prefix}{docId}", new HashEntry[] {
new HashEntry ("tag", tag),
new HashEntry ("content", content),
new HashEntry ("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
});
} public static async Task DeleteAsync(string docId)
{
await db.KeyDeleteAsync($"{prefix}{docId}");
} public static async Task DropIndexAsync()
{
await ft.DropIndexAsync(indexName, true);
} public static async Task<InfoResult> InfoAsync()
{
return await ft.InfoAsync(indexName);
} public static async IAsyncEnumerable<(string Content, double Score)> SearchAsync(float[] vector, int limit)
{
var query = new Query($"*=>[KNN {limit} @vector $vector AS score]")
.AddParam("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
.SetSortBy("score")
.ReturnFields("content", "score")
.Limit(0, limit)
.Dialect(2); var result = await ft.SearchAsync(indexName, query).ConfigureAwait(false);
foreach (var document in result.Documents)
{
yield return (document["content"], Convert.ToDouble(document["score"]));
}
} public static async IAsyncEnumerable<(string Tag, string Content, double Score)> SearchAsync(string tag, float[] vector, int limit)
{
var query = new Query($"(@tag:{tag})=>[KNN {limit} @vector $vector AS score]")
.AddParam("vector", vector.SelectMany(BitConverter.GetBytes).ToArray())
.SetSortBy("score")
.ReturnFields("tag", "content", "score")
.Limit(0, limit)
.Dialect(2); var result = await ft.SearchAsync(indexName, query).ConfigureAwait(false);
foreach (var document in result.Documents)
{
yield return (document["tag"], document["content"], Convert.ToDouble(document["score"]));
}
}
}
}

篇幅原因先到这里,下一篇我们接着探讨如何利用ChatGPT Embeddings技术提取文本向量,并基于Redis实现文本相似度匹配。相比传统方法,这种方式能够更好地保留文本的语义和情感信息,从而更准确地反映文本的实质性内容。

感谢阅读,点赞+分享+收藏+关注
文章出自猿惑豁微信公众号

利用Redis实现向量相似度搜索:解决文本、图像和音频之间的相似度匹配问题的更多相关文章

  1. 利用redis完成自动补全搜索功能(三)

    前面已经完成了分词和自动提示功能,最后把搜索结合在一起,来个完成的案例.当然最好还是用搜索分词解决,这个只是一个临时解决方案. 其实加上搜索很简单,要做的就是3件事 1. 分词的时候,把有用词的id存 ...

  2. 利用redis完成自动补全搜索功能(二)

    前面介绍了自动完成的大致思路,现在把搜索次数的功能也结合上去.我采用的是hash表来做的,当然也可以在生成分词的时候,另外一个有序集合来维护排序, 然后2个有序集合取交集即可.这里介绍hash的方式来 ...

  3. 利用redis完成自动补全搜索功能(一)

    最近要做一个搜索自动补全的功能(目前只要求做最前匹配),自动补全就是自动提示,类似于搜索引擎,再上面输入一个字符,下面会提示多个关键词供参考,比如你输入 nb 2字符, 会自动提示nba,nba录像, ...

  4. 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存

    原文:http://blog.csdn.net/heyewu4107/article/details/71009712 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存 问 ...

  5. 利用redis实现分布式事务锁,解决高并发环境下库存扣减

    利用redis实现分布式事务锁,解决高并发环境下库存扣减   问题描述: 某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 解决方案一 利用数据 ...

  6. 利用Redis解决Url过长的问题

    做网站,接手别人的代码,发现url有时候会过长导致页面直接翻掉. 后来想了一下可以利用redis将太长的地方暂存,加载页面时获取即可. 存Redis: /// <summary> /// ...

  7. 利用Redis锁解决高并发问题

    这里我们主要利用Redis的setnx的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当前键存在 ...

  8. 利用 Redis 锁解决高并发问题

    这里我们主要利用 Redis 的 setnx 的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当 ...

  9. nginx负载均衡中利用redis解决session一致性问题

    关于session一致性的现象及原因不是本小作文的重点,可以另行找杜丽娘O(∩_∩)O哈哈~重点是利用redis集中存储共享session的实际操作. 一.业务场景:nginx/tomcat/redi ...

  10. 利用Redis cache优化app查询速度实践

    注意:本篇文章译自speeding up existing app with a redis cache,如需要转载请注明出处. 发现问题 在应用解决方法之前,我们需要对我们面对的问题有一个清晰的认识 ...

随机推荐

  1. Kubernetes(K8S) kubesphere 介绍

    使用 Kubeadm 部署 Kubernetes(K8S) 安装--附K8S架构图 官网地址:https://kubesphere.com.cn/ KubeSphere 是个全栈的Kubernetes ...

  2. P7603 [THUPC2021] 鬼街(减半警报器模板)

    P7603 [THUPC2021] 鬼街(减半警报器模板) 前言 这是一个由 lxl 大佬提出的神奇 trick,第一次省选集训的时候有点颓,听完了没写.刚好明天又要讲这个不如写篇题解. 还是,我太弱 ...

  3. 点&边双连通分量

    双连通分量 参考博客:https://www.cnblogs.com/jiamian/p/11202189.html#_2 概念 双连通分量有点双连通分量和边双连通分量两种.若一个无向图中的去掉任意一 ...

  4. Prism Sample 16-RegionContext

    终于发现一个有趣的新知识了. 本例的核心是RegionContext,意思是一个区域的上下文.但与DataContext似乎并不相同. 先看一下整体思路. 在主窗体上只有一个Region: <G ...

  5. Java的抽象类 & 接口

    抽象类 如果自下而上在类的继承层次结构中上移,位于上层的类更具有通用性,甚至可能更加抽象.从某种角度看,祖先类更加通用,人们只将它作为派生其他类的基类,而不作为想使用的特定的实例类.例如,考虑一下对 ...

  6. 面试精灵:Java后端靠谱、强大的面试题网站(稳拿offer)

    ​面试精灵:一个给力的Java后端面试题网站. 网址:https://offer.skyofit.com 这套题真实.高频.全面.有详细答案.保你稳过面试,让你成为offer收割机.题目包括:Java ...

  7. 2020-10-07:redis存在线程安全的问题吗?为什么?

    福哥答案2020-10-07:#福大大架构师每日一题# Redis6.0的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程顺序执行.所以我们不需要去考虑控制 key.lua.事务, ...

  8. 2021-01-06:mysql中,我存十亿个手机号码,考虑存储空间和查询效率,用什么类型的字段去存?

    福哥答案2021-01-06: [答案来自此链接:](https://www.zhihu.com/question/438078173)首先提出假设:考虑一下这几个问题:手机号码都是数字吗?都是中国的 ...

  9. 2021-12-16:给定两个数a和b, 第1轮,把1选择给a或者b, 第2轮,把2选择给a或者b, ... 第i轮,把i选择给a或者b。 想让a和b的值一样大,请问至少需要多少轮? 来自字节跳动。

    2021-12-16:给定两个数a和b, 第1轮,把1选择给a或者b, 第2轮,把2选择给a或者b, - 第i轮,把i选择给a或者b. 想让a和b的值一样大,请问至少需要多少轮? 来自字节跳动. 答案 ...

  10. SQL Server 2014 英文版安装教程

    安装过程如下 1. 点击setup开始安装. 2. 选择如下的全新安装. 3. 自动生成产品密钥,然后点击下一步. 4. 勾选接受条款,然后点击下一步. 5. 自动更新根据实际情况进行选择,点击下一步 ...