生成模型的两大代表:VAE和GAN
生成模型
给定数据集,希望生成模型产生与训练集同分布的新样本。对于训练数据服从\(p_{data}(x)\);对于产生样本服从\(p_{model}(x)\)。希望学到一个模型\(p_{model}(x)\)与\(p_{data}(x)\)尽可能接近。
这也是无监督学习中的一个核心问题——密度估计问题。有两种典型的思路:
- 显式的密度估计:显式得定义并求解分布\(p_{model}(x)\),如VAE。
- 隐式的密度估计:学习一个模型\(p_{model}(x)\),而无需显式定义它,如GAN。
VAE
AE
首先介绍下自编码器(Auto Encoder, AE),它将输入的图像X通过编码器encoder编码为一个隐向量(bottleneck)Z,然后再通过解码器decoder解码为重构图像X',它将自己编码压缩再还原故称自编码。结构如下图所示:
以手写数字数据集MNIST为例,输入图像大小为28x28,通道数为1,定义隐向量的维度(latent_dim)为1 x N,N=20。经过编码器编码为一个长度为20的向量,再通过解码器解码为28x28大小的图像。将生成图像X'与原始图像X进行对比,计算重构误差,通过最小化误差优化模型参数:
\]
一般distance距离函数选择均方误差(Mean Square Error, MSE)。AE与PCA作用相同,通过压缩数据实现降维,还能把降维后的数据进行重构生成图像,但PCA的通过计算特征值实现线性变换,而AE则是非线性。
VAE
如果中间的隐向量的每一分量取值不是直接来自Encoder,还是在一个分布上进行采样,那么就是VAE(Variational Auto Encoder),结构如下图所示:
还是上面的例子,这里的Z维度还是1 x 20,但是每一分量不是直接来自Encoder,而是在一个分布上进行采样计算,一般来说分布选择正态分布(当然也可以是其他分布)。每个正态分布的\(\mu\)与\(\sigma\)由Encoder的神经网络计算而来。关于Z上每一分量的计算,这里,\(\epsilon\)从噪声分布中随机采样得到。
\]
在Encoder的过程中给定x得到z就是计算后验概率\(q_\phi(z|x)\),学习得到的z为先验分布\(p_\theta(z)\),Decoder部分根据z计算x的过程就是似然估计\(p_\theta(x|z)\),训练的目的也是最大化似然估计(给出了z尽可能得还原为x)。
边缘似然度\(p_\theta(x)=\int p_\theta(z)p_\theta(x|z)\,{\rm d}z\),边缘似然度又是每个数据点的边缘似然之和组成:\(\log p_\theta(x^{(1)},\cdots,x^{(N)})=\sum_{i=1}^N\log p_\theta(x^{(i)})\),可以被重写为:
\]
等式右边第二项称为边缘似然估计的下界,可以写为:
\]
得到损失函数:
\]
GAN
生成对抗网络(Generative Adversarial Nets, GAN)需要同时训练两个模型:生成器(Generator, G)和判别器(Discriminator, D)。生成器的目标是生成与训练集同分布的样本,而判别器的目标是区分生成器生成的样本和训练集中的样本,两者相互博弈最后达到平衡(纳什均衡),生成器能够以假乱真,判别器无法区分真假。
生成器和判别器最简单的应用就是分别设置为两个MLP。为了让生成器在数据x学习分布\(p_g\),定义一个噪声分布\(p_z(z)\),然后使用生成器\(G(z;\theta_g)\)将噪声映射为生成数据x'(\(\theta_g\)是生成器模型参数)。同样定义判别器\(D(x;\theta_d)\),输出为标量表示概率,代表输入的x来自数据还是\(p_g\)。训练D时,以最大化分类训练样例还是G生成样本的概率准确性为目的;同时训练G以最小化\(\log(1-D(G(z)))\)为目的,两者互为博弈的双方,定义它们的最大最小博弈的价值函数\(V(G,D)\):
\]
可以得到生成器与判别器的损失函数:
\mathcal{L}_D = -\log(D(x)) - \log(1 - D(G(z)))
\]
极端情况下如果D很完美,\(D(x)=1,D(G(z))=0\),最后两项结果都为0,但如果存在误分类,由于log两项结果会变为负数。随着G的输出越来越像x导致D误判,价值函数V也会随之变小。
计算它们的期望(\(\mathbb{E}_{x\sim p}f(x)=\int_xp(x)f(x){\rm d}x\)):
=\int_xp_{data}(x)\log D(x)+p_g(x)\log(1-D(x))\,{\rm d}x
\]
当D取到最优解时,上面的最大最小博弈价值函数\(V(G,D)\)可以写为:
\mathbb{E}_{x\sim p_{data}}[\log\frac{p_{data}(x)}{p_{data}(x)+p_g(x)}]+\mathbb{E}_{x\sim p_g}[\log\frac{p_g(x)}{p_{data}(x)+p_g(x)}]
\]
当\(p_g=p_{data}\),取到\(-\log4\),上式可以写成KL散度的形式:
\]
当\(p_g=p_{data}\)时,D取最小值也就是最优解。对于对称的KL散度,可以写成JS散度的形式:
\]
参考文献
- PyTorch-VAE-vanilla_vae.py
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).
- DALL·E 2(内含扩散模型介绍)【论文精读】
- Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014).
- 【概率论】先验概率、联合概率、条件概率、后验概率、全概率、贝叶斯公式
- 机器学习方法—优雅的模型(一):变分自编码器(VAE)
- GAN论文逐段精读【论文精读】
生成模型的两大代表:VAE和GAN的更多相关文章
- GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- tflearn kears GAN官方demo代码——本质上GAN是先训练判别模型让你能够识别噪声,然后生成模型基于噪声生成数据,目标是让判别模型出错。GAN的过程就是训练这个生成模型参数!!!
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 ...
- GAN实战笔记——第二章自编码器生成模型入门
自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...
- 深度|OpenAI 首批研究成果聚焦无监督学习,生成模型如何高效的理解世界(附论文)
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BRO ...
- ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...
- 【图机器学习】cs224w Lecture 8 & 9 - 图神经网络 及 深度生成模型
目录 Graph Neural Network Graph Convolutional Network GraphSAGE Graph Attention Network Tips Deep Gene ...
- Java轻量级业务层框架Spring两大核心IOC和AOP原理
IoC(Inversion of Control): IOC的基本概念是:不创建对象,但是描述创建它们的方式.在代码中不直接与对象和服务连接,但在配置文件中描述哪一个组件需要哪一项服务.容器负责将这些 ...
- 生成模型(Generative)和判别模型(Discriminative)
生成模型(Generative)和判别模型(Discriminative) 引言 最近看文章<A survey of appearance models in visual object ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- 文档主题生成模型(LDA)
一.问题描述 1.1文本建模相关 统计文本建模的目的其实很简单:就是估算一组参数,这组参数使得整个语料库出现的概率最大.这是很简单的极大似然的思想了,就是认为观测到的样本的概率是最大的.建模的目标也是 ...
随机推荐
- AI绘画Stable Diffusion实战操作: 62个咒语调教-时尚杂志封面
今天来给大家分享,如何用sd简单的咒语输出好看的图片的教程,今天做的是时尚杂志专题,话不多说直入主题. 还不会StableDiffusion的基本操作,推荐看看这篇保姆级教程: AI绘画:Stable ...
- HTML一键打包APK工具最新版1.9.2更新(附下载地址)
HMTL网址打包APK,可以把本地HTML项目, Egret游戏,网页游戏,或者网站打包为一个安卓应用APK文件,无需编写任何代码,也无需配置安卓开发环境,支持在最新的安卓设备上安装运行. 打包软件会 ...
- 解决 wg-quick 在 Mac 上 bash 3 无法运行的问题
问题原因 我可以理解,开发人员不想使用苹果使用的旧bash v3.但从用户的帖子来看,安装一个较新的bash并不那么好 所以我看了wireguard的wg-quick.需要支持的唯一变化,两个bash ...
- Electron包装网站的问题
原文链接 原文链接 Preface 最近尝试了很多不错的在线工具,只是每次都要进入网站,有点麻烦,于是想到之前了解过的electron,尝试一下打包成本地应用. Contents 1.下载所有源文件 ...
- pbjs 无法编码 bytes 类型数据问题的解决方案
问题背景 之前写过一篇<使用脚本收发 protobuf 协议数据>,通过 pbjs 命令可以将 protobuf 二进制数据转换为 json: > pbjs msg.proto -- ...
- Spring Boot 目录遍历--表达式注入--代码执行--(CVE-2021-21234)&&(CVE-2022-22963)&&(CVE-2022-22947)&&(CVE-2022-2296)
Spring Boot 目录遍历--表达式注入--代码执行--(CVE-2021-21234)&&(CVE-2022-22963)&&(CVE-2022-22947)& ...
- Springboot简单功能示例-2 KEY初始化功能和全局错误处理
springboot-sample 介绍 springboot简单示例 跳转到发行版 查看发行版说明 软件架构(当前发行版使用) springboot hutool-all 非常好的常用java工具库 ...
- Django框架——模型层单表操作、模型层多表操作、模型层常用和非常用字段和参数、模型层进阶
文章目录 1 模型层-单表操作 一 ORM简介 二 单表操作 2.1 创建表 1 创建模型 2 更多字段 3 更多参数 4 settings配置 5 增加,删除字段 2.2 添加表纪录 2.3 查询表 ...
- 【开源】给ChatGLM写个,Java对接的SDK
作者:小傅哥 - 百度搜 小傅哥bugstack 博客:bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 大家好,我是技术UP主小傅哥. 清华大学计算机系的超大规模训练模型 Cha ...
- kubeadm 添加master及node
1.添加master 新master服务器初始化 添加k8s源 $ cat <<EOF > /etc/yum.repos.d/kubernetes.repo [kubernetes] ...