在路上---学习篇(一)Python 数据结构和算法 (6)基于GA(遗传)算法的小案例
独白
最近了解到一种算法叫遗传算法,对其比较感兴趣,研究了一下,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解
----->>载自百度百科
自己研究了下,部分代码以及部分函数的功能暂未弄清楚。仍正在努力学习当中。附上一组代码,利用遗传算法匹配一组密码,最后达到正确输出密码的案例。代码如下:
import numpy as np class GeneticAlgorithm(object):
"""遗传算法""" def __init__(self, cross_rate, mutation_rate, n_population, n_iterations, password):
self.cross_rate = cross_rate # 交叉可能性
self.mutate_rate = mutation_rate # 变异的可能性
self.n_population = n_population # 种群的大小
self.n_iterations = n_iterations # 迭代次数
self.password = password # 要破解的密码
self.password_size = len(self.password) # 要破解密码的长度
self.password_ascii = np.fromstring(self.password, dtype=np.uint8) # 将password转换成ASCII.
self.ascii_bounder = [32, 126+1] # 初始化一个种群
def init_population(self): population = np.random.randint(low=self.ascii_bounder[0], high=self.ascii_bounder[1],
size=(self.n_population, self.password_size)).astype(np.int8)
return population # 将个体的DNA转换成ASCII
def translateDNA(self, DNA):
return DNA.tostring().decode('ascii') # 计算种群中每个个体的适应度,适应度越高,说明该个体的基因越好
def fitness(self, population):
# self.password_ascii 是一个列表
match_num = (population == self.password_ascii).sum(axis=1)
# print(match_num)
return match_num # 对种群按照其适应度进行采样,这样适应度高的个体就会以更高的概率被选择
def select(self, population):
# 1e-4 = 0.0001 为数组添加小数
fitness = self.fitness(population) + 1e-4 # add a small amount to avoid all zero fitness
idx = np.random.choice(np.arange(self.n_population), size=self.n_population, replace=True, p=fitness/fitness.sum())
return population[idx] # 进行交配
def create_child(self, parent, pop):
if np.random.rand() < self.cross_rate:
index = np.random.randint(0, self.n_population, size=1)
cross_points = np.random.randint(0, 2, self.password_size).astype(np.bool)
parent[cross_points] = pop[index, cross_points]
return parent # 基因突变
def mutate_child(self, child):
for point in range(self.password_size): if np.random.rand() < self.mutate_rate:
child[point] = np.random.randint(*self.ascii_bounder) # choose a random ASCII index
return child # 进化
def evolution(self):
population = self.init_population()
for i in range(self.n_iterations):
fitness = self.fitness(population)
best_person = population[np.argmax(fitness)]
best_person_ascii = self.translateDNA(best_person) if i % 10 == 0:
print(u'第%-4d次进化后, 基因最好的个体(与欲破解的密码最接近)是: \t %s'% (i, best_person_ascii)) if best_person_ascii == self.password:
print(u'第%-4d次进化后, 找到了密码: \t %s'% (i, best_person_ascii))
break population = self.select(population)
population_copy = population.copy() for parent in population:
child = self.create_child(parent, population_copy)
child = self.mutate_child(child)
parent[:] = child population = population def main():
password = 'I have a dream!' # 要破解的密码 ga = GeneticAlgorithm(cross_rate=0.8, mutation_rate=0.01, n_population=300, n_iterations=500, password=password) ga.evolution() if __name__ == '__main__':
main()
在路上---学习篇(一)Python 数据结构和算法 (6)基于GA(遗传)算法的小案例的更多相关文章
- Python数据结构与算法设计总结篇
1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python]( http://interactivepython.org/courselib/static ...
- Python数据结构与算法设计(总结篇)
的确,正如偶像Bruce Eckel所说,"Life is short, you need Python"! 如果你正在考虑学Java还是Python的话,那就别想了,选Pytho ...
- Python学习【第2篇】:Python数据结构
Python数据结构 1.数字类型 2.字符串 3.列表 4.元组 5.字典 6.集合
- Noah的学习笔记之Python篇:函数“可变长参数”
Noah的学习笔记之Python篇: 1.装饰器 2.函数“可变长参数” 3.命令行解析 注:本文全原创,作者:Noah Zhang (http://www.cnblogs.com/noahzn/) ...
- Noah的学习笔记之Python篇:命令行解析
Noah的学习笔记之Python篇: 1.装饰器 2.函数“可变长参数” 3.命令行解析 注:本文全原创,作者:Noah Zhang (http://www.cnblogs.com/noahzn/) ...
- Noah的学习笔记之Python篇:装饰器
Noah的学习笔记之Python篇: 1.装饰器 2.函数“可变长参数” 3.命令行解析 注:本文全原创,作者:Noah Zhang (http://www.cnblogs.com/noahzn/) ...
- Python学习(四)数据结构(概要)
Python 数据结构 本章介绍 Python 主要的 built-type(内建数据类型),包括如下: Numeric types int float Text Sequence ...
- Python学习【第一篇】Python简介
Python简介 Python前世今生 Python是著名的“龟叔”Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言. 现在,全世界差不多有600多种编 ...
- Python学习之路【第一篇】-Python简介和基础入门
1.Python简介 1.1 Python是什么 相信混迹IT界的很多朋友都知道,Python是近年来最火的一个热点,没有之一.从性质上来讲它和我们熟知的C.java.php等没有什么本质的区别,也是 ...
- python学习【第一篇】python介绍
python发展历史 起源 Python的作者,Guido von Rossum,荷兰人.1982年,Guido从阿姆斯特丹大学获得了数学和计算机硕士学位.然而,尽管他算得上是一位数学家,但他更加享受 ...
随机推荐
- 采用PCA算法&KMeans算法来实现用户对物品类别的喜好细分(菜篮子分析)(附带数据集下载)
实现该项目的流程如下 """ 项目:用户对物品类别的喜好细分(菜篮子分析) 主算法:PCA降维算法 KMeans算法 总思路 1.导包 2.获取数据 3.数据处理 5.特 ...
- 发布关于PostGIS对于USD格式的拓展
我们非常高兴的发布为了一年一度的SIGGRAPH 2023发布关于为PostGIS支持USD格式的新拓展. 新添加了3个函数 ST_AsUSDA(geom geometry, usd_root_nam ...
- 带你快速上手HetuEngine
本文分享自华为云社区<[手把手带你玩转HetuEngine](一)HetuEngine快速上手>,作者:HetuEngine九级代言. HetuEngine是什么 HetuEngine是华 ...
- 如何调用API接口获取商品数据
在当今数字化的时代,电子商务的崛起使得网购成为了人们生活中不可或缺的一部分.作为电子商务中最为熟知和流行的平台之一,拥有大量的商品资源和用户群体.如果你是一名开发者或者是对数据分析感兴趣的人,你可能会 ...
- [python] 第一个爬虫, 爬妹子写真集图片
效果图 版本以及需要用到的第三方库 python 2.7 bs4 (安装命令: pip install bs4) - 代码 #!/usr/bin/env python #coding:UTF-8 #脚 ...
- Vite+ts+springboot项目集成2
项目集成 集成element-plus 官网地址: 安装图标库 pnpm install element-plus @element-plus/icons-vue 入口文件main.ts全局安装ele ...
- POWERBI_1分钟学会_连续上升或下降指标监控
一:数据源 模拟数据为三款奶茶销量的日销售数据源,日期是23.8.24-23.8.31.A产品为连续7天,日环比下降,B产品为连续3天,日环比下降,C产品为连续2天,日环比下降. 二:建立基础度量值 ...
- OpenJDK17-JVM源码阅读-ZGC-并发标记
1.ZGC简介 1.1 介绍 ZGC 是一款低延迟的垃圾回收器,是 Java 垃圾收集技术的最前沿,理解了 ZGC,那么便可以说理解了 java 最前沿的垃圾收集技术. 从 JDK11 中作为试验特性 ...
- C#桶排序算法
前言 桶排序是一种线性时间复杂度的排序算法,它将待排序的数据分到有限数量的桶中,每个桶再进行单独排序,最后将所有桶中的数据按顺序依次取出,即可得到排序结果. 实现原理 首先根据待排序数据,确定需要的桶 ...
- Go包介绍与初始化:搞清Go程序的执行次序
Go包介绍与初始化:搞清Go程序的执行次序 目录 Go包介绍与初始化:搞清Go程序的执行次序 一.main.main 函数:Go 应用的入口函数 1.1 main.main 函数 1.2 main.m ...