一.量化模型调用方式

  下面是一个调用FlagAlpha/Llama2-Chinese-13b-Chat[1]的4bit压缩版本FlagAlpha/Llama2-Chinese-13b-Chat-4bit[2]的例子:

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized('FlagAlpha/Llama2-Chinese-13b-Chat-4bit', device="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('FlagAlpha/Llama2-Chinese-13b-Chat-4bit',use_fast=False)
input_ids = tokenizer(['<s>Human: 怎么登上火星\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

  这里面有个问题就是由Llama2-Chinese-13b-Chat如何得到Llama2-Chinese-13b-Chat-4bit?这涉及另外一个AutoGPTQ库(一个基于GPTQ算法,简单易用且拥有用户友好型接口的大语言模型量化工具包)[3]。先梳理下思路,由于meta-llama/Llama-2-13b-chat-hf对中文支持较差,所以采用中文指令集在此基础上进行LoRA微调得到了FlagAlpha/Llama2-Chinese-13b-Chat-LoRA,而FlagAlpha/Llama2-Chinese-13b-Chat=FlagAlpha/Llama2-Chinese-13b-Chat-LoRA+meta-llama/Llama-2-13b-chat-hf,即将两者参数合并后的版本。FlagAlpha/Llama2-Chinese-13b-Chat-4bit就是对FlagAlpha/Llama2-Chinese-13b-Chat进行4bit量化后的版本。总结起来就是如何合并,如何量化这2个问题。官方提供的一些合并参数后的模型[4],如下所示:

二.如何合并LoRA Model和Base Model

  网上合并LoRA参数和原始模型的脚本很多,参考文献[6]亲测可用。合并后的模型格式包括pthhuggingface两种。如下所示:

1.LoRA Model文件列表

  对于LLama2-7B-hf进行LoRA微调生成文件如下所示:

adapter_config.json
adapter_model.bin
optimizer.pt
README.md
rng_state.pth
scheduler.pt
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
trainer_state.json
training_args.bin

2.Base Model文件列表

  LLama2-7B-hf文件列表,如下所示:

config.json
generation_config.json
gitattributes.txt
LICENSE.txt
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
model.safetensors.index.json
pytorch_model-00001-of-00002.bin
pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
README.md
Responsible-Use-Guide.pdf
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
USE_POLICY.md

3.合并后huggingface文件列表

  合并LoRA Model和Base Model后,生成huggingface格式文件列表,如下所示:

config.json
generation_config.json
pytorch_model-00001-of-00007.bin
pytorch_model-00002-of-00007.bin
pytorch_model-00003-of-00007.bin
pytorch_model-00004-of-00007.bin
pytorch_model-00005-of-00007.bin
pytorch_model-00006-of-00007.bin
pytorch_model-00007-of-00007.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

4.合并后pth文件列表

  合并LoRA Model和Base Model后,生成pth格式文件列表,如下所示:

consolidated.00.pth
params.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

5.合并脚本[6]思路

  以合并后生成huggingface模型格式为例,介绍合并脚本的思路,如下所示:

# 步骤1:加载base model
base_model = LlamaForCausalLM.from_pretrained(
    base_model_path, # 基础模型路径
    load_in_8bit=False, # 加载8位
    torch_dtype=torch.float16, # float16
    device_map={"": "cpu"}, # cpu
)

# 步骤2:遍历LoRA模型
for lora_index, lora_model_path in enumerate(lora_model_paths):
    # 步骤3:根据base model和lora model来初始化PEFT模型
    lora_model = PeftModel.from_pretrained(
                base_model, # 基础模型
                lora_model_path, # LoRA模型路径
                device_map={"": "cpu"}, # cpu
                torch_dtype=torch.float16, # float16
            )
    # 步骤4:将lora model和base model合并为一个独立的model         
    base_model = lora_model.merge_and_unload()
    ......

# 步骤5:保存tokenizer
tokenizer.save_pretrained(output_dir)

# 步骤6:保存合并后的独立model
LlamaForCausalLM.save_pretrained(base_model, output_dir, save_function=torch.save, max_shard_size="2GB")

  合并LoRA Model和Base Model过程中输出日志可参考huggingface[7]和pth[8]。

三.如何量化4bit模型

  如果得到了一个训练好的模型,比如LLama2-7B,如何得到LLama2-7B-4bit呢?因为模型参数越来越多,多参数模型的量化还是会比少参数模型的非量化效果要好。量化的方案非常的多[9][12],比如AutoGPTQ、GPTQ-for-LLaMa、exllama、llama.cpp等。下面重点介绍下AutoGPTQ的基础实践过程[10],AutoGPTQ进阶教程参考文献[11]。

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig # 量化配置
from transformers import AutoTokenizer

# 第1部分:量化一个预训练模型
pretrained_model_name = r"L:/20230713_HuggingFaceModel/20230903_Llama2/Llama-2-7b-hf" # 预训练模型路径
quantize_config = BaseQuantizeConfig(bits=4, group_size=128) # 量化配置,bits表示量化后的位数,group_size表示分组大小
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_name, quantize_config) # 加载预训练模型
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) # 加载tokenizer

examples = [ # 量化样本
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]
# 翻译:准备examples(一个只有两个键'input_ids'和'attention_mask'的字典列表)来指导量化。这里只使用一个文本来简化代码,但是应该注意,使用的examples越多,量化后的模型就越好(很可能)。
model.quantize(examples) # 执行量化操作,examples提供量化过程所需的示例数据
quantized_model_dir = "./llama2_quantize_AutoGPTQ" # 保存量化后的模型
model.save_quantized(quantized_model_dir) # 保存量化后的模型

# 第2部分:加载量化模型和推理
from transformers import TextGenerationPipeline # 生成文本

device = "cuda:0"
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device=device) # 加载量化模型
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer, device=device) # 得到pipeline管道
print(pipeline("auto-gptq is")[0]["generated_text"]) # 生成文本

参考文献:

[1]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat

[2]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat-4bit

[3]https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md

[4]https://github.com/FlagAlpha/Llama2-Chinese#基于Llama2的中文微调模型

[5]CPU中合并权重(合并思路仅供参考):https://github.com/yangjianxin1/Firefly/blob/master/script/merge_lora.py

[6]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora.py

[7]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_hf_log

[8]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_pt_log

[9]LLaMa量化部署:https://zhuanlan.zhihu.com/p/641641929

[10]AutoGPTQ基础教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md

[11]AutoGPTQ进阶教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/02-Advanced-Model-Loading-and-Best-Practice.md

[12]Inference Experiments with LLaMA v2 7b:https://github.com/djliden/inference-experiments/blob/main/llama2/README.md

[13]llama2_quantize_AutoGPTQ:https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/llama2_quantize_AutoGPTQ.py

Llama2-Chinese项目:4-量化模型的更多相关文章

  1. CNN结构演变总结(二)轻量化模型

    CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间 ...

  2. 使用F#开发量化模型都缺什么?

    量化模型多数是基于统计的,因此,统计运算库应该是必备的.在Matlab.R中包含了大量的统计和概率运算,可以说拿来就用,非常方便,相比之下,F#的资源就很少了,这里给大家提供几个链接,可以解决一部分问 ...

  3. Atitit 项目管理 提升开发效率的项目流程方法模型 哑铃型  橄榄型 直板型

    Atitit 项目管理 提升开发效率的项目流程方法模型 哑铃型  橄榄型 直板型 项目主体三个部分 ui界面,中间层,数据库 按照不同的比重可以分为一下三个模型  哑铃型  橄榄型 直板型 哑铃型 开 ...

  4. Atitit. 如何判断软件工程师 能力模型 程序员能力模型  项目经理能力模型

    Atitit. 如何判断软件工程师 能力模型 程序员能力模型  项目经理能力模型 这里能力模型的标准化是对工具的使用为基本 工具(ide,语言,类库,框架,软件) 第一步 ::可使用api 类库 框架 ...

  5. 轻量化模型之MobileNet系列

    自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...

  6. 轻量化模型之SqueezeNet

    自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...

  7. 后盾网lavarel视频项目---lavarel使用模型进行增删改查操作

    后盾网lavarel视频项目---lavarel使用模型进行增删改查操作 一.总结 一句话总结: 使用模型操作常用方法 查一条:$model=Tag::find($id); 删一条:Tag::dest ...

  8. 轻量化模型:MobileNet v2

    MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于Mobile ...

  9. 轻量化模型训练加速的思考(Pytorch实现)

    0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测 ...

  10. 轻量化模型系列--GhostNet:廉价操作生成更多特征

    ​  前言  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Gh ...

随机推荐

  1. 从JDK源码级深入剖析main方法的运行机制

    如果你是一名Java应用开发工程师,你应该对"public static void main(String[] args)"这段代码再熟悉不过了,然而你是否了解main方法是如何调 ...

  2. Logistic Regression and its Maximum Likelihood Estimation

    从 Linear Regression 到 Logistic Regression 给定二维样本数据集 \(D = \left\{ (\vec{x}_{1}, y_{1}), (\vec{x}_{2} ...

  3. 使用 OpenAPI 构建 RESTful API 文档

    作为一名开发者,往往需要编写程序的 API 文档,尤其是 Web 后端开发者,在跟前端对接 HTTP 接口的时候,一个好的 API 文档能够大大提高协作效率,降低沟通成本,本文就来聊聊如何使用 Ope ...

  4. Blazor前后端框架Known-V1.2.3

    V1.2.3 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行. Gitee: https://gitee.com/known/Known Gith ...

  5. tcpdump 常用命令

    最后更新时间 2021-10-05. Linux 的命令太多,tcpdump 是一个非常强大的抓包命令. 有时候想看线上发生的一些问题: nginx 有没有客户端连接过来-- 客户端连接过来的时候 P ...

  6. Flutter系列文章-Flutter进阶

    在前两篇文章中,我们已经了解了Flutter的基础知识,包括Flutter的设计理念.框架结构.Widget系统.基础Widgets以及布局.在本文中,我们将进一步探讨Flutter的高级主题,包括处 ...

  7. Spring Boot Starter 剖析与实践

    引言 对于 Java 开发人员来说,Spring 框架几乎是必不可少的.它是一个广泛用于开发企业应用程序的开源轻量级框架.近几年,Spring Boot 在传统 Spring 框架的基础上应运而生,不 ...

  8. [mysql]定制封装MySQL的docker镜像

    前言 基于MySQL的原版镜像做一些个性化配置修改,封装/etc/my.cnf文件到镜像中,并且支持通过环境变量修改innodb_buffer_pool_size.server_id以及自动配置inn ...

  9. 利用pytorch自定义CNN网络(一):torchvision工具箱

    本文是利用pytorch自定义CNN网络系列的第一篇,主要介绍 torchvision工具箱及其使用,关于本系列的全文见这里. 笔者的运行设备与软件:CPU (AMD Ryzen 5 4600U) + ...

  10. Jenkins 配置邮件通知(腾讯企业邮箱)

    开通企业邮箱SMTP服务 登录企业微信邮箱,然后打开设置,在里面找到 收发信设置,在开启服务里面将 开启IMAP/SMTP服务 勾选 保存后回到邮箱绑定页签下,将安全设置里的安全登录开关打开 在下面的 ...