https://vjudge.net/problem/LightOJ-1030

题意:

在一个1×N的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币。 
现在从1格子开始,每次摇骰子,他就前进几步,但有一种情况例外,如果当前位置+色子数 > N,那么他就会重新摇色子。 
走到N这个位置的话,意味着游戏结束了。 
问游戏结束时,这个人得到金币的期望。

思路:
这里给出两种做法,一种是正序求解,一种是逆序求解。

①正序求解:

这种做法是从前往后计算每个格子的概率,假设我们现在处于第i个格子,它后面还有k=min(n-i,6)个格子,那么通过这个格子,我们就可以到达它后面的格子,现在它后面第j(1<=j<=k)个格子的概率就要加上d[i] / k。仔细想一想的话,其实就是个全概率。自己不太能讲得清,具体还是看代码吧。

②逆序求解:

这种做法是从后往前计算,也就是概率dp。d[i]表示以i为起点的格子所能获得的期望。

当我们要计算d[i]的时候,d[i]+=1/k*d[i+j]。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; int n; int a[maxn];
double r[maxn]; int main()
{
//freopen("in.txt","r",stdin);
int T;
int kase=;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]); memset(r,,sizeof(r)); r[]=;
for(int i=;i<=n;i++)
{
int k=;
while(i+k>n) k--;
for(int j=;j<=k;j++)
{
r[i+j]+=r[i]*(1.0/k);
}
} double ans=;
for(int i=;i<=n;i++)
ans+=r[i]*a[i]; printf("Case %d: ",++kase);
printf("%.7f\n",ans);
}
return ;
}

正序求解

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; int n; double a[maxn]; int main()
{
//freopen("in.txt","r",stdin);
int T;
int kase=;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf",&a[i]); for(int i=n-;i>=;i--)
{
int k=min(,n-i);
for(int j=;j<=k;j++)
{
a[i]+=./k*a[i+j];
}
} printf("Case %d: ",++kase);
printf("%.7f\n",a[]);
}
return ;
}

逆序求解

LightOJ 1030 Discovering Gold (期望)的更多相关文章

  1. LightOJ - 1030 Discovering Gold —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1030 1030 - Discovering Gold    PDF (English) Statistics For ...

  2. LightOJ 1030 Discovering Gold(期望 概率)

    正推,到达i的概率为p[i],要注意除了1和n外,到达i的概率并不一定为1 概率表达式为p[i] += p[j] / min(n - j, 6) 从j带过来的期望为exp[i] += exp[j] / ...

  3. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  4. LightOJ 1030 Discovering Gold(期望)

    Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell o ...

  5. LightOj 1030 - Discovering Gold(dp+数学期望)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 题意:在一个1*n 的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得 ...

  6. LightOJ 1030 Discovering Gold 数学期望计算

    题目大意:给出长度为n的一条隧道,每个位置都有一定数量的财宝.给你一枚骰子,roll到几点就前进几步,如果即将到达的地方超过了这条隧道长度,就重新roll一次,走到n点结束.求这个过程能收获多少财宝. ...

  7. LightOJ 1030 - Discovering Gold - [概率DP]

    题目链接:https://cn.vjudge.net/problem/LightOJ-1030 You are in a cave, a long cave! The cave can be repr ...

  8. LightOJ 1030 Discovering Gold

    期望,$dp$. 设$ans[i]$为$i$为起点,到终点$n$获得的期望金币值.$ans[i]=(ans[i+1]+ans[i+2]+ans[i+3]+ans[i+4]+ans[i+5]+ans[i ...

  9. LightOJ 1030 Discovering Gold(概率DP)题解

    题意:1~n每格都有金子,每次掷骰子,掷到多少走几步,拿走那格的金子,问你金子的期望 思路:dp[i]表示从i走到n金子的期望,因为每次最多走1<=x<=6步,所以dp[i] = a[i] ...

随机推荐

  1. C/C++程序编译流程

    单个文件的编译过程 多个文件的编译过程

  2. 【BZOJ5082】弗拉格 矩阵乘法

    [BZOJ5082]弗拉格 Description “如果明天进了面试,我就去爆妹子的照”——有妹子的丁相允作为一个oier,自然不能立太多flag,让我们来看一道和flag有关的题目吧 给你n个fl ...

  3. java的synchronized有没有同步的类锁?

    转自:http://langgufu.iteye.com/blog/2152608 http://www.cnblogs.com/beiyetengqing/p/6213437.html 没有... ...

  4. java的this表示当前类还是当前实例?

    转自:http://www.runoob.com/java/java-basic-syntax.html this 表示调用当前实例或者调用另一个构造函数

  5. 170705、springboot编程之自定义properties

    spring boot使用application.properties默认了很多配置.但需要自己添加一些配置的时候,可以这样用,如下! 在application.properties文件中增加信息 1 ...

  6. Maven搭建Nexus私有仓库

    下载压缩包nexus-2.13.0-01-bundle.tar.gz 解压后有两个目录 进入程序目录启动 ./nexus start 启动告警(确认用root启动把以下加入到环境变量) export ...

  7. ETL__pentaho__SPOON_PDI

    Pentaho Data Integration (PDI, also called Kettle),是pentaho的etl工具.虽然etl工具一般都用在数据仓库环境中,可是,PDI还是可以做以下事 ...

  8. nginx:服务器集群

    一.Nginx的事件处理机制 对于一个基本的web服务器来说,事件通常有三种类型,网络事件.信号.定时器. 首先看一个请求的基本过程:建立连接---接收数据---发送数据 . 再次看系统底层的操作 : ...

  9. D. Babaei and Birthday Cake---cf629D(LIS线段树优化)

    题目链接:http://codeforces.com/problemset/problem/629/D 题意就是现有n个蛋糕,蛋糕的形状是圆柱体,每个蛋糕的体积就是圆柱体的体积,每个蛋糕的编号是1-- ...

  10. Bungee Jumping---hdu1155(物理题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1155 题目很长,但是很容易理解,就是人从高s的桥上跳下来,手拉着长为l的绳子末端,如果绳子太短那么人将 ...