最优贸易

最优贸易

描述

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个 城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。 C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价 格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。 商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息 之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城 市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的 过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方 式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另 一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定 这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。 假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路 为单向通行,双向箭头表示这条道路为双向通行。

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。 阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3 号城市以 5的价格卖出水晶球,赚取的旅费数为 2。 阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格 买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n个城市的水晶球价格,m条道路的信息(每条道路所连接的两个城市的编号 以及该条道路的通行情况) 。请你告诉阿龙,他最多能赚取多少旅费。

格式

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的 数目。 第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城 市的商品价格。 接下来 m行, 每行有 3 个正整数, x, y, z, 每两个整数之间用一个空格隔开。 如果 z=1, 表示这条道路是城市 x到城市 y之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y之间的双向道路。

输出格式

输出共1 行, 包含 1 个整数, 表示最多能赚取的旅费。 如果没有进行贸易, 则输出 0。

样例1

样例输入1

5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2

样例输出1

5

限制

每个测试点1s

输入数据保证 1 号城市可以到达n 号城市。 对于 10%的数据,1≤n≤6。 对于 30%的数据,1≤n≤100。 对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。 对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市 水晶球价格≤100。

来源

NOIP 2009

首先我们知道一定要先买完之后才能进行卖的操作,假设我们在k点买了水晶球,那么卖点m一定是在某一条k-->N的路径上的某一个点,因为最后的终点是N,反之从N也一定能到达这个卖点m,所以我们有了思路.

我们可以枚举所有点为买点,显然这是从1开始跑一下spfa找到每条路径的最小权值德文操作。

我们找到买点还需要找到最大的卖点,我们发现对于每个买点k,其最大卖点就是从N-->k的路径最大权值,显然也可以反向跑一下spfa!

一开始想跑dij发现不满足低级的贪心需求,所以还是sfpa吧。

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define inf 0x3f3f3f3f
int N,M,C[100005];
vector<int> g1[100005],g2[100005];
int d1[100005],d2[100005];
bool vis[100005];
void spfa()
{
    memset(d1,inf,sizeof(d1));
    memset(d2,0,sizeof(d2));
    queue<int> Q;
    Q.push(1);
    vis[1]=1;
    d1[1]=C[1];
    while(!Q.empty()){
        int u=Q.front(); Q.pop();
        vis[u]=0;
        for(int i=0;i<g1[u].size();i++){ int x=g1[u][i];
            if(d1[x]>min(d1[u],C[x])){
                d1[x]=min(d1[u],C[x]);
                if(!vis[x]) { Q.push(x); vis[x]=1;}
            }
        }
    }

memset(vis,0,sizeof(vis));
    while(!Q.empty()) Q.pop();
    Q.push(N);
    vis[N]=1;
    d2[N]=C[N];
    while(!Q.empty()){
      int u=Q.front();  Q.pop();
      vis[u]=0;
      for(int i=0;i<g2[u].size();i++){int x=g2[u][i];
      if(d2[x]<max(d2[u],C[x])){
           d2[x]=max(d2[u],C[x]);
           if(!vis[x]) {Q.push(x); vis[x]=1;}
      }
      }
    }
    int ans=0;  bool pd=false;
for(int i=1;i<=N;++i)
if(d1[i]!=inf&&d2[i]!=0)   {pd=1;ans=max(ans,abs(d1[i]-d2[i]));}
if(!pd) ans=0;
cout<<ans<<endl;
}
int main()
{
    int i,j,k;
    int a,b,c;
    cin>>N>>M;
    for(i=1;i<=N;++i) scanf("%d",&C[i]);
    for(i=1;i<=M;++i){
        scanf("%d%d%d",&a,&b,&c);
        g1[a].pb(b);
        g2[b].pb(a);
        if(c==2){
            g1[b].pb(a);
            g2[a].pb(b);
        }
    }
    spfa();
    return 0;
}

voj 1754 spfa的更多相关文章

  1. 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa

    3627: [JLOI2014]路径规划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 186  Solved: 70[Submit][Status] ...

  2. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  3. sgu 240 Runaway (spfa)

    题意:N点M边的无向图,边上有线性不下降的温度,给固定入口S,有E个出口.逃出去,使最大承受温度最小.输出该温度,若该温度超过H,输出-1. 羞涩的题意 显然N*H的复杂度dp[n][h]表示到达n最 ...

  4. spfa模板

    通过stl的queue实现的spfa(vector实现邻接表存图) 本模板没有考虑存在两点不连通的情况 如果需要判断则需要用到并查集或者遍历整个邻接表 #include<iostream> ...

  5. SPFA

    SPFA算法用来求单源最短路.可以处理任何有解的情况. 先建一个数组\(dist_x = 起点到x的最短路长度\),当\(x=起点\)时为0,当x和起点不通时为INF(本题中为\(2^31-1\)). ...

  6. BZOJ2763 [JLOI2011]飞行路线(SPFA + DP)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=2763 Description Alice和Bob现在要乘飞机旅行,他们选择了一家 ...

  7. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

  8. bzoj 1179[Apio2009]Atm (tarjan+spfa)

    题目 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每行一 ...

  9. codevs 1021 玛丽卡(spfa)

    题目描述 Description 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. 因为她和他们不住在同一个城市,因此她开始准备她的长途旅行. 在这个国家中每两个城市之间最多只有一条路相通,并且我们 ...

随机推荐

  1. POI3的资料整理

    转自http://aman.cao.blog.163.com/blog/static/32951336201010823557408/ POI3的资料整理一.POI简介 Jakarta POI 是ap ...

  2. Oracle AWR之-enq: TX - allocate ITL entry

    今天收到压力测试期间awr报告,测试人员要我看看数据库是否有可以优化的地方,数据库服务器配置信息:CPU:32*8,内存:480g 单实例数据库:oracle 11.2.0.4.具体分析过程如下: 可 ...

  3. drawable转mitmap 以及图片base64编码

    static Bitmap drawableToBitmap(Drawable drawable) // drawable 转换成bitmap { int width = drawable.getIn ...

  4. centos MySQL主从配置 ntsysv chkconfig setup命令 配置MySQL 主从 子shell MySQL备份 kill命令 pid文件 discuz!论坛数据库读写分离 双主搭建 mysql.history 第二十九节课

    centos  MySQL主从配置 ntsysv   chkconfig  setup命令  配置MySQL 主从 子shell  MySQL备份  kill命令  pid文件  discuz!论坛数 ...

  5. mysql索引详解(转)

    什么是索引 索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里面的 ...

  6. POJ1236:Network of Schools(tarjan+缩点)?

    题目: http://poj.org/problem?id=1236 [题意] N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1 ...

  7. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  8. Selenium之Chrome浏览器的启动

    1.下载Chromedriver.exe文件放至需要的目录中: 2.编写代码 import org.openqa.selenium.WebDriver; import org.openqa.selen ...

  9. WebKit.net最简单使用方法

    WebKit.net是对WebKit的.Net封装,使用它.net程序可以非常方便的集成和使用webkit作为加载网页的容器.这里介绍一下怎么用它来显示一个网页这样的一个最简单的功能. 第一步: 下载 ...

  10. java:判断二进制数据中第n位是否为1

    可以使用位运算来判断. &是位的与运算符,是指二进制数按位“与”的操作, 逻辑与就是两者都为真的时候才为真,其他真假,假真,假假的运算结果都是假.二进制写法如下 1 & 1 = 1 , ...