题意:在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。

题解:最长反链长度=最小链覆盖=可相交的最小路径覆盖=先传递闭包的不相交的最小路径覆盖=n-先传递闭包的最小二分图匹配

/**************************************************************
Problem: 1143
User: walfy
Language: C++
Result: Accepted
Time:76 ms
Memory:1300 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double eps=1e-6;
const int N=100+10,maxn=100000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; bool ma[N][N],used[N];
int co[N],n,m;
int match(int u)
{
for(int i=1;i<=n;i++)
{
if(!used[i]&&ma[u][i])
{
used[i]=1;
if(!co[i]||match(co[i]))
{
co[i]=u;
return 1;
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ma[a][b]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ma[i][j]|=(ma[i][k]&ma[k][j]);
int ans=0;
for(int i=1;i<=n;i++)
{
memset(used,0,sizeof used);
if(match(i))ans++;
}
printf("%d\n",n-ans);
return 0;
}
/******************** ********************/

bzoj1143: [CTSC2008]祭祀river 最长反链的更多相关文章

  1. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  2. bzoj1143(2718)[CTSC2008]祭祀river(最长反链)

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2781  Solved: 1420[Submit][S ...

  3. BZOJ 1143: [CTSC2008]祭祀river 最长反链

    1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  4. BZOJ 1143 1143: [CTSC2008]祭祀river 最长反链

    1143: [CTSC2008]祭祀river Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动. ...

  5. BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 3236  Solved: 1651 [Submit] ...

  6. 2018.08.20 bzoj1143: [CTSC2008]祭祀river(最长反链)

    传送门 一道简单的求最长反链. 反链简单来说就是一个点集,里面任选两个点u,v都保证从u出发到不了v且v出发到不了u. 链简单来说就是一个点集,里面任选两个点u,v都保证从u出发可以到达v或者v出发可 ...

  7. BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...

  8. [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)

    题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...

  9. bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行

    其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...

随机推荐

  1. 使用colmap进行稠密重建

    colmap应该是目前state-of-art的增量式SFM方案,可以方便的对一系列二维图片进行三维重建 不用对摄像机进行标定,只需要从不同角度对重建场景或物体进行拍摄得到一系列图像作为输入 首先需要 ...

  2. Dubbo学习记录

    参考资料: 官网 Dubbo详细介绍与安装使用过程

  3. K-均值聚类(K-means)算法

    https://www.cnblogs.com/ybjourney/p/4714870.html 最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学pytho ...

  4. wsdl客户端代码生成的方法

    在jdk的bin目录下有一个wsimport.exe的工具,使用该工具命令生产java客户端代码: 命令如下: wsimport  -keep -d d:\ -s d:\src -p com.map  ...

  5. Nginx高级玩法

    1. Nginx获取自定义消息头 .nginx是支持读取非nginx标准的用户自定义header的,但是需要在http或者server下开启header的下划线支持: underscores_in_h ...

  6. Drawing Graphs using Dot and Graphviz

    Drawing Graphs using Dot and Graphviz Table of Contents 1. License 2. Introduction 2.1. What is DOT? ...

  7. js-template-art【二】语法

    参看地址 一.模板语法 1.变量使用与输出 <% if (user) { %> <h2><%= user.name %></h2> <% } %& ...

  8. Spring源码解析(四)Bean的实例化和依赖注入

    我们虽然获得了Bean的描述信息BeanDefinition,但是什么时候才会真正的实例化这些Bean呢.其实一共有两个触发点,但是最后实际上调用的是同一个方法. 第一个:在AbstractAppli ...

  9. 二、 Mosquitto 使用说明

    一. 继上一篇文章<<Mosquitto 介绍&安装>> 之后.本章介绍 Mosquitto 的 简单使用. 1> 创建用户 # groupadd mosquit ...

  10. Windows Server 2008 R2(X64) MSDN镜像简体中文版与英文版ISO下载及Key激活码

    Windows Server 2008 R2 MSDN ISO镜像简体中文版 文件名:cn_windows_server_2008_r2_standard_enterprise_datacenter_ ...