《算法图解》——第十章 K最近邻算法
第十章 K最近邻算法
1 K最近邻(k-nearest neighbours,KNN)——水果分类

2 创建推荐系统
利用相似的用户相距较近,但如何确定两位用户的相似程度呢?
①特征抽取
对水果分类来说:个头和颜色就是特征
再根据这些特征绘图,然后根据毕达哥拉斯公式(欧氏距离呗)计算距离
对于推荐系统而言,同样是如此。
练习
10.1 在Netflix示例中,你使用距离公式计算两位用户的距离,但给电影打分时,每位用户的标准并不都相同。假设你有两位用户——Yogi和Pinky,他们欣赏电影的品味相同,但Yogi给喜欢的电影都打5分,而Pinky更挑剔,只给特别好的电影打5分。他们的品味一致,但根据距离算法,他们并非邻居。如何将这种评分方式的差异考虑进来呢?
归一化(normalization)
10.2 假设Netflix指定了一组意见领袖。例如,Quentin Tarantino和Wes Anderson就是Netflix的意见领袖,因此他们的评分比普通用户更重要。请问你该如何修改推荐系统,使其偏重于意见领袖的评分呢?
权重问题。
②回归
KNN中回归就是预测结果。
如果要使用KNN的话,一定要研究余弦相似度(cosine similarity),余弦相似度不计算两个矢量的距离,而比较它们的角度。
③挑选合适的特征
特征的标准:与要推荐的电影紧密相关的特征;
不偏不倚的特征(例如,如果只让用户给喜剧片打分,就无法判断他们是否喜欢动作片)。
练习
10.3 Netflix的用户数以百万计,前面创建推荐系统时只考虑了5个最近的邻居,这是太多还是太少了呢?
太少了。如果考虑的邻居太少,结果很可能存在偏差。一个不错的经验规则是:如果有N位用户,应考虑sqrt(N)个邻居。
3 机器学习简介
一个
《算法图解》——第十章 K最近邻算法的更多相关文章
- [笔记]《算法图解》第十章 K最近邻算法
K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...
- 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)
K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...
- 图说十大数据挖掘算法(一)K最近邻算法
如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...
- 12、K最近邻算法(KNN算法)
一.如何创建推荐系统? 找到与用户相似的其他用户,然后把其他用户喜欢的东西推荐给用户.这就是K最近邻算法的分类作用. 二.抽取特征 推荐系统最重要的工作是:将用户的特征抽取出来并转化为度量的数字,然后 ...
- PCB 加投率计算实现基本原理--K最近邻算法(KNN)
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...
- K最近邻算法项目实战
这里我们用酒的分类来进行实战练习 下面来代码 1.把酒的数据集载入到项目中 from sklearn.datasets import load_wine #从sklearn的datasets模块载入数 ...
- 机器学习【一】K最近邻算法
K最近邻算法 KNN 基本原理 离哪个类近,就属于该类 [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...
- 机器学习-K最近邻算法
一.介绍 二.编程 练习一(K最近邻算法在单分类任务的应用): import numpy as np #导入科学计算包import matplotlib.pyplot as plt #导入画图工具fr ...
- 数据挖掘算法(一)--K近邻算法 (KNN)
数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训 ...
随机推荐
- cocos2d-x开发: 如何从项目中分离出接口范例
cocos2d-x开发,包括核心模块接口开发和脚本部分的业务逻辑实现.从上层应用需求开始说,脚本在做业务逻辑实现的时候, 很多时候都需要依赖底层的接口功能,但是不是所有的人都可以游刃有余的去明白该怎么 ...
- windows下nginx访问web目录提示403 Forbidden
在windows下 http服务器nginx时,访问web目录提示403 Forbidden,首先需要了解nginx出现403错误是什么意思: 403 Forbidden表示你在请求一个资源文件但是n ...
- CSS节选——选择器
CSS,cascading style sheet,层叠样式表,请留意层叠概念. css3为了区分伪类和伪元素,伪元素采用双冒号写法. 常见伪类——:hover,:link,:active,:targ ...
- linux查看nginx、apache、php、php-fpm、mysql及配置项所在目录
可以先总结下:大都是先用 which 获取目录:然后再获取配置项位置: which mysql /usr/bin/mysql /usr/bin/mysql --help | grep -A1 'De ...
- layDay日期格式不合法报错解决
报错内容如下: Uncaught TypeError: Cannot read property 'appendChild' of undefined 相关报错内容的行代码如下 即使日期格式拼接正确也 ...
- mysql 5.7 或以上版本 group by 问题记录
mysql 5.7或以上的新版本sql_mode 默认开启开 ONLY_FULL_GROUP_BY,如果 select 中出现的字段,没有使用聚合函数,或不存在group by中就会提示,this i ...
- Archlinux+gnome安装中文输入法
环境:archlinux+gnome 1.首先需要配置Archlinuxcn源 打开/etc/pacman.conf,添加 [archlinuxcn] Server = https://mirrors ...
- 初识spark
一. spark 概述 1.是什么: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.2012年,它是由加州伯克利大学AMP实 验室开源的类 Hadoop MapRedu ...
- Burp 之Intruder
攻击类型: (1)Sniper:测试完第一个变量后,就测试下一个变量,一次向下测试,每次只测试一个变量 适用于单变量 (2)Battering ram:只有一个payload,该payload会同时测 ...
- 双端队列 ADT接口 数组实现
Deque ADT接口 DEQUEUE.h: #include <stdlib.h> #include "Item.h" void DEQUEUEinit(int); ...