每个区间只被覆盖一次,求每个点被哪种区间覆盖或者某个区间是否已经被覆盖过都可以用并查集做。

  做法:每个点都指向当前被覆盖区间的右端点+1的位置,某个点的下一个没被覆盖的点是gf(i),同理如果某个区间[l,r]的gf(l)>=r+1,则这个区间已经被完全覆盖。

  显然每个点只会被最后一次染色确定颜色,倒着做就好了。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
const int maxn=;
int n,m,p,q;
int fa[maxn],col[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int gf(int x){return fa[x]==x?x:fa[x]=gf(fa[x]);}
int main()
{
read(n);read(m);read(p);read(q);
for(int i=;i<=n+;i++)fa[i]=i;
for(int i=m;i;i--)
{
int l=(1ll*i*p+q)%n+,r=(1ll*i*q+p)%n+;
if(l>r)swap(l,r);
for(int j=gf(l);j<=r;j=gf(j))
col[j]=i,fa[j]=gf(j+);
}
for(int i=;i<=n;i++)printf("%d\n",col[i]);
}

bzoj2054: 疯狂的馒头(并查集)的更多相关文章

  1. BZOJ2054 疯狂的馒头 并查集

    题意:懒得写了有空再补上 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2054 离线从后往前做,并查集维护下一个没染色的就可以啦- #incl ...

  2. Luogu P2391 白雪皑皑 && BZOJ 2054: 疯狂的馒头 并查集

    4月的时候在luogu上做过 白雪皑皑 这道题,当时一遍AC可高兴了qwq,后来去了个厕所,路上忽然发现自己的做法是错的qwq...然后就咕咕了qwq 今天看到了 疯狂的馒头 ,发现一毛一样OvO.. ...

  3. 【BZOJ 2054】 2054: 疯狂的馒头 (并查集特技)

    Input 第一行四个正整数N,M,p,q Output 一共输出N行,第i行表示第i个馒头的最终颜色(如果最终颜色是白色就输出0). Sample Input 4 3 2 4 Sample Outp ...

  4. Bzoj P2054 疯狂的馒头 | 并查集

    题目链接 思路:因为每次染色都会将某些馒头的颜色彻底更改,所以每个馒头的最终的颜色其实是由最后一次染色决定的,那么我们只考虑最后一次染色即可.对此,我们可以从后往前倒着染色,当目前的染色区间中存在白色 ...

  5. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

  6. 【并查集】bzoj2054 疯狂的馒头

    因为只有最后被染上的颜色会造成影响,所以倒着处理,用并查集维护已经染色的区间的右端点,即fa[i]为i所在的已染色区间的右端点,这样可以保证O(n)的复杂度. #include<cstdio&g ...

  7. bzoj2054 疯狂的馒头

    bzoj上现在找不到这题,所以目前只是过了样例,没有测 2054: 疯狂的馒头 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 715  Solved: ...

  8. bzoj2054疯狂的馒头——线段树

    中文题面,一排有n个馒头,用刷子把整个连续的区间刷成一种颜色.因为颜色会覆盖掉之前的.所以我们可以用线段树来反着处理.如果这段区间之前刷到过就不要再遍历进去了,因为这次已经被上次刷的颜色给覆盖了.最后 ...

  9. [BZOJ2238]Mst 最小生成树+树链剖分/并查集

    链接 题解 先构建出最小生成树,如果删的是非树边,直接输出答案 否则问题转化为,把该边删掉后剩下两个联通块,两个端点分别在两个块内的最小边权,LCT可以维护 不妨换一种思考方向:考虑一条非树边可以代替 ...

随机推荐

  1. 关于scrum敏捷测试

    关于scrum的一些定义 敏捷软件开发方法是一种把新增功能通过较小的循环逐步迭代添加到项目中(的项目管理方法),工作是由自我组织的团队以高效合作的方式拥抱和适应变化来保证客户需求被真正满足的方式来完成 ...

  2. hadoop常见错误解决方法

    一.启动集群时 1.节点启动失败 1.1端口占用 1.1报错信息:address already in use - bind Address:50070 解决步骤: 查询端口占用:lsof -i:50 ...

  3. java之接口开发-初级篇-socket通信

    socket通信实现util包类实现 public class SocketThread extends Thread { public void run() { while (true) { // ...

  4. Node2vec 代码分析

    Node2vec 代码从Github上clone到本地,主要是main.py和node2vec.py两个文件. 下面把我的读代码注释放到上面来, import numpy as np import n ...

  5. 使用SKlearn(Sci-Kit Learn)进行SVR模型学习

    今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...

  6. 初试Gevent – 高性能的Python并发框架

    Gevent是一个基于greenlet的Python的并发框架,以微线程greenlet为核心,使用了epoll事件监听机制以及诸多其他优化而变得高效. 于greenlet.eventlet相比,性能 ...

  7. ES6的新特性(1)——ES6 的概述

    ES6 的概述 首先,感谢马伦老师的ES6新特性的教程. ECMAScript 和 JavaScript 的关系是 ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前 ...

  8. linux awk,sort,uniq,wc,cut命令详解

    1.awk awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息 $ 表示当前行 $ 表示第一列 NF 表示一共有多少列 $NF 表示最 ...

  9. DS06--图

    一.学习总结 1.图的思维导图 2.图学习体会 深度优先遍历与广度优先遍历 不同点:广度优先搜索,适用于所有情况下的搜索,但是深度优先搜索不一定能适用于所有情况下的搜索.因为由于一个有解的问题树可能含 ...

  10. tomcat配置服务

    1.在server中右键添加tomcat 2.双击tomcat打开配置窗口添加jvm参数 -Doapath="C:\exeye-workspace\exEyeWeb\oadoc"  ...