两个条件都不太好处理

每行放置的个数实际很小,枚举最多放x

但还是不好放

考虑所有位置先都放上,然后删除最少使得合法

为了凑所有的位置都考虑到,把它当最大流

但是删除最少,所以最小费用

行列相关,左行点,右列点

S到行,流“能填位置”费0

列到T,流“能填位置”费0

i行到i列,流x,即枚举的最大个数

空位(i,j),i行连j列,流1费0

最小费用最大流

意义:流过i行到i列的流量,象征留下一个芯片

流过费用为1的,象征把这个芯片删除。

最大流保证所有位置都考虑到了

最小费用使得最少。

可以发现最后的结果一定满足条件1

条件2?

最大流为flow,费用为cos,总共的位置(多出来的+必填)=sum

放置了tot=sum-cos

如果有x/tot<=A/B那么更新ans=max(ans,tot)
x一定时,tot越大,越可能比A/B小。和最小费用相符。

虽然可能x过大,但是答案一定可以枚举到。

代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
const int P=;
const int inf=0x3f3f3f3f;
int n,A,B;
struct node{
int nxt,to;
int c,w;
}e[*(N*N+*N)+];
int hd[P],cnt=;
int s,t;
void add(int x,int y,int w,int c){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
e[cnt].c=c;
e[cnt].w=w;hd[x]=cnt; e[++cnt].nxt=hd[y];
e[cnt].to=x;
e[cnt].c=-c;
e[cnt].w=;hd[y]=cnt;
}
int dis[P];
bool in[P];
int incf[P],pre[P];
queue<int>q;
int ans,flow,cos;
int l[N],h[N];
char mp[N][N];
bool spfa(){
memset(dis,inf,sizeof dis);
memset(pre,,sizeof pre);
while(!q.empty()) q.pop();
dis[s]=;
incf[s]=inf;
q.push(s);
while(!q.empty()){
int x=q.front();q.pop();
in[x]=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(e[i].w){
if(dis[y]>dis[x]+e[i].c){
dis[y]=dis[x]+e[i].c;
pre[y]=i;
incf[y]=min(incf[x],e[i].w);
if(!in[y]){
in[y]=;
q.push(y);
}
}
}
}
}
if(dis[t]==inf) return false;
return true;
}
void upda(){
int x=t;
while(pre[x]){
e[pre[x]].w-=incf[t];
e[pre[x]^].w+=incf[t];
x=e[pre[x]^].to;
}
flow+=incf[t];
cos+=dis[t]*incf[t];
}
void EK(int lim){
cos=;flow=;
memset(hd,,sizeof hd);
cnt=;
s=,t=*n+;
for(reg i=;i<=n;++i) {
add(s,i,l[i],);
add(i+n,t,h[i],);
add(i,i+n,lim,);
}
for(reg i=;i<=n;++i){
for(reg j=;j<=n;++j){
if(mp[i][j]=='.') add(i,j+n,,);
}
}
while(spfa()) upda();
}
void clear(){
ans=-;
for(reg i=;i<=n;++i) l[i]=n;
for(reg j=;j<=n;++j) h[j]=n;
}
int main(){
int o=;
while(){
rd(n);rd(A);rd(B);
if(n==&&A==&&B==) break;
++o;
clear();
int can=;
int alr=;
for(reg i=;i<=n;++i){
scanf("%s",mp[i]+);
for(reg j=;j<=n;++j){
if(mp[i][j]=='/') --l[i],--h[j];
else ++can;
if(mp[i][j]=='C') ++alr;
}
}
for(reg x=;x<=n;++x){
EK(x);
int tot=can-cos;
if(flow==can&&A*tot>=x*B) ans=max(ans,tot);
}
ans-=alr;
printf("Case %d: ",o);
if(ans<) printf("impossible");
else printf("%d",ans);
puts("");
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/1/8 10:23:22
*/

最小费用最大流可以考虑两个限制

最大流限制合法

费用流限制优秀

[Wf2011]Chips Challenge的更多相关文章

  1. 【BZOJ 2673】[Wf2011]Chips Challenge

    题目大意: 传送门 $n*n$的棋盘,有一些位置可以放棋子,有一些已经放了棋子,有一些什么都没有,也不能放,要求放置以后满足:第i行和第i列的棋子数相同,同时每行的棋子数占总数比例小于$\frac{A ...

  2. Bzoj2673 3961: [WF2011]Chips Challenge 费用流

    国际惯例题面:如果我们枚举放几个零件的话,第二个限制很容易解决,但是第一个怎么办?(好的,这么建图不可做)考虑我们枚举每行每列最多放几个零件t,然后计算零件总数sum.这样如果可行的话,则有t*B&l ...

  3. BZOJ2673 [Wf2011]Chips Challenge 费用流 zkw费用流 网络流

    https://darkbzoj.cf/problem/2673 有一个芯片,芯片上有N*N(1≤N≤40)个插槽,可以在里面装零件. 有些插槽不能装零件,有些插槽必须装零件,剩下的插槽随意. 要求装 ...

  4. bzoj3961[WF2011]Chips Challenge

    题意 给出一个n*n的网格,有些格子必须染成黑色,有些格子必须染成白色,其他格子可以染成黑色或者白色.要求最后第i行的黑格子数目等于第i列的黑格子数目,且某一行/列的格子数目不能超过格子总数的A/B. ...

  5. bzoj 3961: [WF2011]Chips Challenge【最小费用最大流】

    参考:https://blog.csdn.net/Quack_quack/article/details/50554032 神建图系列 首先把问题转为全填上,最少扣下来几个能符合条件 先考虑第2个条件 ...

  6. [2011WorldFinal]Chips Challenge[流量平衡]

    Chips Challenge Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  7. 【UVALive - 5131】Chips Challenge(上下界循环费用流)

    Description A prominent microprocessor company has enlisted your help to lay out some interchangeabl ...

  8. 解题:BZOJ 2673 World Final 2011 Chips Challenge

    题面 数据范围看起来很像网络流诶(滚那 因为限制多而且强,数据范围也不大,我们考虑不直接求答案,而是转化为判定问题 可以发现第二个限制相对好满足,我们直接枚举这个限制就可以.具体来说是枚举所有行中的最 ...

  9. 【题解】uva1104 chips challenge

    原题传送门 题目分析 给定一张n*n的芯片. '.'表示该格子可以放一个零件. 'C'表示该格子已经放了一个零件(不能拆下). '/'表示该格子不能放零件. 要求在芯片的现有基础上,放置尽可能多的零件 ...

随机推荐

  1. 使用Photon引擎进行unity网络游戏开发(一)——Photon引擎简介

    使用Photon引擎进行unity网络游戏开发(一)--Photon引擎简介 Photon PUN Unity 网络游戏开发 Photon引擎简介: 1. 服务器引擎: 服 务 器 引 擎 介 绍 服 ...

  2. tomcat配置https | 自签发证书配置

    未配置证书的访问:

  3. 785. Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  4. KETTLE:mongdb与mysql互传数据

    注:部分内容引用了 http://blog.sina.com.cn/s/blog_4ac9f56e0101g881.html 1.mongodb传数据到mysql 1)在kettle中,mongodb ...

  5. ntp时钟服务器配置

    集群中时间不同步有可能会让大数据的应用程序运行混乱,造成不可预知的问题,比如Hbase,当时间差别过大时就会挂掉,所以在大数据集群中,ntp服务,应该作为一种基础的服务,以下在演示在CentOS 7. ...

  6. 从无到有之webpack+vuerouter的简单例子以及各个属性解释

    之前一直没玩过webpack和vue,近两周才看这玩意,本文纯属自己的实验+之前angular作战经验的理解一些入门文章 首先webpack关于vue以及各个包 module.exports = { ...

  7. TP框架代码学习 学习记录 3.2.3

    文件:think.class.php PHP提供register_shutdown_function()这个函数,能够在脚本终止前回调注册的函数,也就是当 PHP 程序执行完成后执行的函数.regis ...

  8. Scrum立会报告+燃尽图(Beta阶段第二周第二次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2410 项目地址:https://coding.net/u/wuyy694 ...

  9. HDU 5159 Card

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解: 考虑没一个数的贡献,一个数一次都不出现的次数是(x-1)^b,而总的排列次数是x^b, ...

  10. sql数据库表容量

    标题:SQL Server 的最大容量规范 数据库的文件大小,文件数量都有限制. 表的大小也有限制,如果表过大,查询效率就会下降,考虑对数据进行分割,对历史数据进行独立存储.