Portal -->agc003E

Description

  给你一个数串\(S\),一开始的时候\(S=\{1,2,3,...,n\}\),现在要对其进行\(m\)次操作,每次操作给定一个\(a\),具体方式为将\(S\)重复写很多很多很多次然后取前\(a\)个数作为新的\(S\),问最后得到的\(S\)中\(1\sim n\)每个数的出现次数

  

Solution

  emmm想到了解法但是想用线段树解决原本暴力就可以解决的东西然后就凉了==

  首先手玩一下小规模的数据,记当前\(S\)的长度为\(nowlen\),要变成的新的长度为\(x\),\(cnt[i]\)表示当前数字\(i\)出现的次数,分两种情况讨论一下:

1、如果说\(nowlen<=x\):那么所有的\(cnt[i]\)肯定都要\(*x/nowlen\),然后再加上余数的贡献(这部分比较复杂,先不展开说)

2、如果说\(nowlen>x\):那么会发现我们要先找到之前的某次操作使得那次操作之后\(S\)的长度\(<=x\),然后再回到1中的情况

  

​  也就是说,我们其实只关心长度不下降的操作,所以接下来提到的操作都是以最后一个操作结尾的不下降操作序列(记为\(st[i]\)好了)中的元素

​  现在我们着重思考一下那个余数的问题,考虑余数(记为\(rest\))部分的贡献其实就是\(S\)的前\(rest\)个数,那其实我们要做的就是查询某次操作之后\(S\)的前\(rest\)个数中每个数出现的次数,会发现这个其实就是。。原问题,那所以。。递归求解之类的。。?

​  我们考虑实现一个过程\(solve(x,l)\)表示在第\(x\)次操作之后,\(S\)前\(l\)位中每个数出现的次数(假装返回值是一个数组),记\(cnt[i]\)表示第\(i\)次操作之后\(S\)中每个数字的出现次数(其实就是一个二维数组啦==不过当然只是方便理解这么说,实际实现的时候并不需要开这么一个玩意)那么大概可以写出来一个\(solve(x,l)=l/st[x-1]*cnt[x-1]+solve(x-1,l\%st[x-1])\)

  然后接下来就是一个比较重要的经典性质:一个数每次模不大于它的数,总共只能模\(log\)次

  (没错反正我当时弱智了没有反应过来==)

  所以至多递归\(log\)层(当\(l=0\)的时候自然就直接返回了嘛)

  所以我们可以考虑暴力一点来处理这个东西(数据结构什么的是没有前途的qwq比如说一开始想了一个可持久化线段树==显然空间爆炸)

  

​  注意到根据上面那条。。递归式,我们可以知道\(cnt[i]\)可以被表示为至多\(log\)个带个系数的\(cnt[j](j<i)\)每次再加上一些不需要递归处理的余数的贡献(也就是当余数\(<=st[1]\)的时候,此时不需要再递归处理而是可以直接得到,因为肯定是对从\(1\)开始的连续的某一段的数字有贡献,或者更加笼统一点就是一个前缀)的和,所以我们考虑维护一个\(addtag\),\(\sum\limits_{i=1}^x addtag[i]\)表示处理到当前,数\(x\)的不需要递归处理的余数贡献,再维护一个\(multag[i]\)表示,用\(cnt[i]\)来表示\(cnt[m]\)(也就是最后的\(cnt\))时,前面需要乘的系数(其实如果再直白一点。。可以说\(addtag\)其实就相当于一个零头,当然这个说法不严谨),那么由于最开始的\(cnt\)是知道的(都是\(1\)),所以最后数字\(x\)的答案(如果不为\(0\)的话)就应该是\(multag[1]*1+\sum\limits_{i=1}^xaddtag[i]\)

​  最后就是实现问题了,其实就是正常每次把商乘上去就好了好像也没有什么特别要说的。。

  

​  mark:(貌似依旧是没有什么建设性的东西。。)把未知的转化成已知的。。?比如说就是把系数推出来然后用最开始的cnt来表示最后的cnt

​  mark:一个数每次模不大于它的数,总共只能模\(log\)次

  

​  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e5+10;
ll a[N];
ll ans[N],st[N],addtag[N],multag[N];
int n,m;
ll nowlen;
void prework(){
st[0]=0; a[0]=n;
for (int i=0;i<=m;++i){
while (st[0]&&st[st[0]]>a[i]) --st[0];
st[++st[0]]=a[i];
}
}
int get_pos(ll x,int r){
int l=1,mid,ret=r;
while (l<=r){
mid=l+r>>1;
if (st[mid]<=x) ret=mid,l=mid+1;
else r=mid-1;
}
return ret;
}
void solve(ll k,ll rest,int ed){
if (!rest) return;
if (rest<=st[1]){
addtag[1]+=k; addtag[rest+1]-=k;
return;
}
int pre=get_pos(rest,ed);
multag[pre]+=k*(rest/st[pre]);
solve(k,rest%st[pre],pre-1);
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
ll rest,tmp,x;
scanf("%d%d",&n,&m);
nowlen=n;
for (int i=1;i<=m;++i) scanf("%lld",a+i);
prework();
multag[st[0]]=1;
for (int i=st[0];i>=2;--i){
tmp=st[i]/st[i-1];
rest=st[i]%st[i-1];
multag[i-1]+=multag[i]*tmp;
solve(multag[i],rest,i-1);
}
for (int i=1;i<=st[1];++i){
addtag[i]+=addtag[i-1];
printf("%lld\n",addtag[i]+multag[1]);
}
for (int i=st[1]+1;i<=n;++i) printf("0\n");
}

【agc003E】Sequential operations on Sequence的更多相关文章

  1. 【AGC003 E】Sequential operations on Sequence

    Description 你有一个长度为 \(n\) 的序列,第 \(i\) 项为 \(i\). 有 \(m\) 次操作,每次操作给定一个 \(x\),你需要将序列无限循环后截取前 \(x\) 项,作为 ...

  2. 【BZOJ1345】[Baltic2007]序列问题Sequence 贪心+单调栈

    [BZOJ1345][Baltic2007]序列问题Sequence Description 对于一个给定的序列a1, …, an,我们对它进行一个操作reduce(i),该操作将数列中的元素ai和a ...

  3. 【SPOJ】1182 Sorted bit sequence

    [算法]数位DP [题解]动态规划 写了预处理函数却忘了调用是一种怎样的体验? #include<cstdio> #include<cstring> #include<a ...

  4. 【做题】agc003E - Sequential operations on Sequence——经典结论

    题意:有一个序列,初始是从\(1\)到\(n\)的\(n\)个数.有\(q\)次操作,每次操作给出\(q_i\),把当前的序列重复无数遍,然后截取最前面的\(q_i\)个元素作为新序列.要求输出完成所 ...

  5. agc003E Sequential operations on Sequence

    题意: 有一个数字串S,初始长度为n,是1 2 3 4 …… n. 有m次操作,每次操作给你一个正整数a[i],你先把S无穷重复,然后把前a[i]截取出来成为新的S. 求m次操作后,每个数字在S中出现 ...

  6. 线段树【CF620E】The Child and Sequence

    Description At the children's day, the child came to Picks's house, and messed his house up. Picks w ...

  7. 题解【Codeforces438D】The Child and Sequence

    题目描述 At the children's day, the child came to Picks's house, and messed his house up. Picks was angr ...

  8. 【转】Oracle数据库中Sequence的用法

    在Oracle数据库中,sequence等同于序列号,每次取的时候sequence会自动增加,一般会作用于需要按序列号排序的地方. 1.Create Sequence (注释:你需要有CREATE S ...

  9. 【转】MySQL中增加sequence管理功能(模拟创建sequence)

    1.oracel可以直接支持sequence,但是mysql不支持sequence,因此我们要通过模拟sequence的方法在mysql中创建sequence.模拟sequence的方法:项目场景:项 ...

随机推荐

  1. selenium 各种很奇葩的异常

    问题1:使用selenium3+java的脚本模拟登陆时,总是提示用户名,密码错误 解决方法:1 在执行输入用户名和密码的代码之前,加上driver.navigate().refresh(); QQ群 ...

  2. 性能度量RMSE

    回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error).如下公式. m为是你计算RMSE的数据集中instance的数量. x(i)是第i个实例的特征值向量 ,y ...

  3. python序列成员资格

    可以用做登录操作,判断用户名密码是否正确! 代码示例: database = [ ['], ['], ['], ['] ] username = input("UserName: " ...

  4. rest_framework基础

    简介 为什么要使用REST framework? Django REST framework 是一个强大且灵活的工具包,用以构建Web APIs. - 在线可视的API,对于赢得你的开发者们十分有用  ...

  5. iPhone上的CPU架构,核数以及运行内存

    机型 CPU架构 CPU名 CPU位数 CPU核数 运行内存 iPhone 5 ARMv7s A6 32bit 双核 1G iPhone 5c ARMV7s A6 32bit 双核 1G iPhone ...

  6. Opendarlight Carbon 安装

    写在前面 目前最轻松的一次安装过程,感谢大翔哥的帮助. 安装过程 1.Zip包下载 找到Opendaylight官网,进入下载界面找到Carbon版本并下载. 2.Zip包解压 把这个zip压缩包解压 ...

  7. 团队Alpha冲刺(九)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  8. Swift-属性监听

    监听属性的改变(开发中使用很多) oc中长是重写set方法 swift通过属性监听器 class Dog: NSObject { var name:String?{ // 属性监听器 // 属性即将改 ...

  9. WebService(一)

    1.简介 Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和配置这些应用程序,用 ...

  10. 第五周PSP &进度条

    团队项目PSP 一:表格     C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论用户界面 9:27 10:42 18 57 60 分析与 ...