题意:\(n\)个赌场,每个赌场有\(p_{i}\)的胜率,如果赢了就走到下一个赌场,输了就退回上一个赌场,规定\(1\)号赌场的上一个是\(0\)号赌场,\(n\)号赌场的下一个是\(n + 1\)号赌场,一旦到达\(0\)或\(n + 1\)号赌场就相当于退出赌局了。

定义统治区间\([l, r]\)为从第\(l\)个赌场开始,到达第\(r + 1\)个赌场,且在过程中不经过\([1, l - 1]\)的赌场。维护2种操作:

1,修改一个赌场的胜率

2,询问统治\([l, r]\)的概率

题解:

设\(f_{i}\)表示从\(x\)能走到\(n\)的概率,则有:

\[f_{i} = f_{i - 1}(1 - p_{i}) + f_{i + 1} \cdot p_{i}
\]

\[f_{i} - f[i - 1] = p_{i}(f_{i + 1} - f_{i - 1})
\]

令\(g_{i} = f_{i} - f_{i - 1} = p_{i} (g_{i} + g_{i + 1})\)(由上式得)

所以\(g_{i + 1} = g_{i} \cdot \frac{1 - p_{i}}{p_{i}}\),

令\(t_{i} = \frac{1 - p_{i}}{p_{i}}\),则\(g_{i + 1} = g_{i} t_{i}\)

显然有\(f_{n} = 1(不用走就到了), f_{0} = 0(因为已经出边界)\).

所以\(\sum_{i = 1}^{n}g_{i} = 1\),那么带入上面\(g_{i + 1} = g_{i} t_{i}\),得到:

\[g_{1} + g_{1}t_{1} + g_{1}t_{1}t_{2} + ... + g_{1}t_{1}...t_{n - 1} = 1
\]

提出\(g_{1}\).

\[g_{1}(1 + t_{1} + t_{1} t_{2} + ... + t_{1}...t_{n - 1}) = 1
\]

那么我们维护\(t\)值,就可以得到\(g_{1}\)的值。

上面是求询问区间\([1, n - 1]\)时的答案,也就是\(1\)到\(n\)的概率。

替换一下,同理可得,在询问区间\([l, r]\)时,也就是要求\(l\)到\(r + 1\)的概率,那么就有如下等式:

\[g_{l}(1 + t_{l} + t_{l}t_{l + 1} + ... + t_{l}t_{l + 1}...t_{r}) = 1
\]

用线段树维护:

对于区间\([l, r]\)维护\(t_{l} + t_{l}t_{l + 1} + ... + t_{l}t_{l + 1}...t_{r}\).然后在最后加1即可。

定义node结构体,其中x表示这个区间的\(t_{l} + t_{l}t_{l + 1} + ... + t_{l}t_{l + 1}...t_{r}\),w表示\(t_{l}t_{l + 1}...t_{r}\)

那么合并时新区间的x为\(left.x + right.x * left.w\),

w为\(left.w \cdot right.w\)

#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 101000
#define ac 500000 int n, q, w;
int l[ac], r[ac];
double ans, go;
double tree[ac], p[AC], t[AC], sum[ac]; struct node{
double x, w;
}; inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
} inline void update(int x){
int ll = x * 2, rr = ll + 1;
sum[x] = sum[ll] * sum[rr];
tree[x] = tree[ll] + tree[rr] * sum[ll];
} void build(int x, int ll, int rr)
{
l[x] = ll, r[x] = rr;
if(ll == rr) {tree[x] = sum[x] = t[ll]; return ;}
int mid = (ll + rr) >> 1;
build(x * 2, ll, mid), build(x * 2 + 1, mid + 1, rr);
update(x);
} void change(int x, int go, double w)
{
if(l[x] == r[x]){sum[x] = tree[x] = w; return ;}
int mid = (l[x] + r[x]) >> 1;
(go <= mid) ? change(x * 2, go, w) : change(x * 2 + 1, go, w);
update(x);
} node find(int x, int ll, int rr)
{
if(l[x] == ll && r[x] == rr) return (node){tree[x], sum[x]};
int mid = (l[x] + r[x]) >> 1;
if(rr <= mid) return find(x * 2, ll, rr);
else if(ll > mid) return find(x * 2 + 1, ll, rr);
else
{
node now = find(x * 2, ll, mid), y = find(x * 2 + 1, mid + 1, rr);
now.x = now.x + y.x * now.w, now.w = now.w * y.w;//要更新now.w!!!
return now;
}
} void pre()
{
n = read(), q = read();
for(R i = 1; i <= n; i ++)
{
double a = read(), b = read();
p[i] = a / b;
}
for(R i = 1; i <= n; i ++) t[i] = (1 - p[i]) / p[i];
} void work()
{
int opt, a, b, x;
for(R i = 1; i <= q; i ++)
{
opt = read();
if(opt == 1)
{
x = read(), a = read(), b = read(), go = 1.0 * a / b;
go = (1 - go) / go, change(1, x, go);
}
else
{
a = read(), b = read();
node x = find(1, a, b);
// printf("%lf\n", x.x);
printf("%.10lf\n", 1 / (1 + x.x));
}
}
} int main()
{
freopen("in.in", "r", stdin);
pre();
build(1, 1, n);
work();
fclose(stdin);
return 0;
}

CF712E Memory and Casinos 期望概率的更多相关文章

  1. Codeforces Round #370 (Div. 2) E. Memory and Casinos (数学&&概率&&线段树)

    题目链接: http://codeforces.com/contest/712/problem/E 题目大意: 一条直线上有n格,在第i格有pi的可能性向右走一格,1-pi的可能性向左走一格,有2中操 ...

  2. CF712E Memory and Casinos

    设\(f[i]\)为从\(i\)到\(r+1\)且不走出区间的概率 \(f[i]=p[i]f[i+1]+(1-p[i])f[i-1]\) \(f[i]-f[i-1]=p[i](f[i+1]-f[i-1 ...

  3. Codeforces Round #370 (Div. 2) E. Memory and Casinos 线段树

    E. Memory and Casinos 题目连接: http://codeforces.com/contest/712/problem/E Description There are n casi ...

  4. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  5. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  6. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  7. 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学

    神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...

  8. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  9. BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯

    这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性 ...

随机推荐

  1. [cogs2314][HZOI 2015] Persistable Editor - 可持久化平衡树

    [cogs2314][HZOI 2015]Persistable Editor - 可持久化平衡树 题目链接 首先吐槽扯淡几句 [题目描述] 维护一种可持久化的文本编辑器,支持下列操作: 1 p st ...

  2. Scratch3.0设计的插件系统(上篇)

    我们每个人在内心深处都怀有一个梦想: 希望创造出一个鲜活的世界,一个宇宙.处在我们生活的中间.被训练为架构师的那些人,拥有这样的渴望: 在某一天,在某一个地方,因为某种原因,创造出了一个不可思议的.美 ...

  3. NLP的12条精髓

    NLP是神经语言程序学 (Neuro-Linguistic Programming) 的英文缩写.一.没有两个人是一样的 No two persons are the same. 1.没有两个人的人生 ...

  4. Struts2(一.基本介绍,环境搭建及需求分析)

    Struts2框架开发 前言 开发工具:eclipse struts1:老项目使用较多,维护时需要用到 struts2:新项目使用较多 一.特点 1. 无侵入式设计 struts2 与 struts ...

  5. oracle数据库之组函数

    组函数也叫聚合函数,用来对一组值进行运算,并且可以返回单个值 常见的组函数: (1)count(*),count(列名)  统计行数:找到所有不为 null 的数据来统计行数 (2)avg(列名)  ...

  6. linux常用的查看设备的命令

    系统 # uname -a # 查看内核/操作系统/CPU信息  # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息  # ...

  7. underscore.js源码解析(三)

    最近工作比较忙,做不到每周两篇了,周末赶着写吧,上篇我针对一些方法进行了分析,今天继续. 没看过前两篇的可以猛戳这里: underscore.js源码解析(一) underscore.js源码解析(二 ...

  8. OpenCV学习笔记——疑问

    vec3b:表示每一个Vec3b对象中,可以存储3个char(字符型)数据,比如可以用这样的对象,去存储RGB图像中的一个像素点.typedef Vec<uchar, 3> Vec3b; ...

  9. Python 变量和常量及数据类型

    一.变量的命名 变量由字母.数字和下划线组成.变量的第1个字符必须是字母或下划线. 二.变量的赋值 例: x = 1 三.局部变量 局部变量只能在函数或者代码段内使用. 四.全局变量 在函数之外定义的 ...

  10. Struts2(六)

    以下内容是基于导入struts2-2.3.32.jar包来讲的 1.OGNL OGNL是Object-Graph Navigation Language的缩写,全称为对象图导航语言,是一种功能强大的表 ...