题目描述

给出一个n*m的矩阵,某些格子不能通过,某些格子只能上下通过或左右通过。求经过所有非不能通过格子的哈密顿回路条数。

输入

第一行有两个数N, M表示地图被分割成N*M个块,接下来有N行,每行有M个字符。
 .  表示这个块可以通过
 - 表示这个块只可以左右通过
 | 表示这个块只可以上下通过
 # 表示这个块不能通过
(从每个块只能走到其上下左右相邻的四个块)

输出

一个数,表示小明把所以可以通过的块都经过且只经过一次并回到原地的方案数。

样例输入

4 4
....
..-.
....
....

样例输出

1


题解

插头dp

这道题 的唯一差别在于:部分格子只能上下通过或只能左右通过。

因此判断条件那里改一改就好了。

这里学了一下 CQzhangyu 的技♂巧:判断时只需要判断当前状态是否适用于当前格子,以及转移是否适用于当前格子即可。这样不合法的状态就会在下一步剪掉。这一步可以省很大的代码量。

注意开long long(题面的long指的就是int)

#include <cstdio>
#include <cstring>
typedef long long ll;
int m , a[13][13] , b[13] , w[1600000] , v[42000] , tot;
ll f[13][13][42000];
char str[14];
void dfs(int p , int c , int now)
{
if(c < 0 || c > m - p + 1) return;
if(p > m)
{
w[now] = ++tot , v[tot] = now;
return;
}
dfs(p + 1 , c , now);
dfs(p + 1 , c + 1 , now + b[p]);
dfs(p + 1 , c - 1 , now + 2 * b[p]);
}
inline int l(int v , int p)
{
int i , c = 0;
for(i = p ; ~i ; i -- )
{
if(v / b[i] % 3 == 1) c -- ;
if(v / b[i] % 3 == 2) c ++ ;
if(!c) return i;
}
return -1;
}
inline int r(int v , int p)
{
int i , c = 0;
for(i = p ; i <= m ; i ++ )
{
if(v / b[i] % 3 == 1) c ++ ;
if(v / b[i] % 3 == 2) c -- ;
if(!c) return i;
}
return -1;
}
int main()
{
int n , i , j , k , x , y , p , q;
ll ans = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
{
if(str[j] == '.' || str[j] == '-') a[i][j] |= 1;
if(str[j] == '.' || str[j] == '|') a[i][j] |= 2;
if(str[j] != '#') x = i , y = j;
}
}
b[0] = 1;
for(i = 1 ; i <= m ; i ++ ) b[i] = b[i - 1] * 3;
dfs(0 , 0 , 0);
f[0][m][w[0]] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= tot ; j ++ )
if(v[j] % 3 == 0)
f[i][0][j] = f[i - 1][m][w[v[j] / 3]];
for(j = 1 ; j <= m ; j ++ )
{
for(k = 1 ; k <= tot ; k ++ )
{
p = v[k] / b[j - 1] % 3 , q = v[k] / b[j] % 3;
if((p && !(a[i][j] & 1)) || (q && !(a[i][j] & 2))) continue;
if(!a[i][j]) f[i][j][k] += f[i][j - 1][k];
else
{
if(!p && !q && a[i][j] == 3) f[i][j][w[v[k] + b[j - 1] + 2 * b[j]]] += f[i][j - 1][k];
if(!p && q && a[i][j] & 1) f[i][j][k] += f[i][j - 1][k];
if(p && !q && a[i][j] & 2) f[i][j][k] += f[i][j - 1][k];
if(!p && q) f[i][j][w[v[k] + q * (b[j - 1] - b[j])]] += f[i][j - 1][k];
if(p && !q) f[i][j][w[v[k] + p * (b[j] - b[j - 1])]] += f[i][j - 1][k];
if(p == 1 && q == 1) f[i][j][w[v[k] - b[j - 1] - b[j] - b[r(v[k] , j)]]] += f[i][j - 1][k];
if(p == 2 && q == 2) f[i][j][w[v[k] - 2 * (b[j - 1] + b[j]) + b[l(v[k] , j - 1)]]] += f[i][j - 1][k];
if(p == 2 && q == 1) f[i][j][w[v[k] - 2 * b[j - 1] - b[j]]] += f[i][j - 1][k];
if(p == 1 && q == 2 && i == x && j == y && v[k] == b[j - 1] + 2 * b[j]) ans += f[i][j - 1][k];
}
}
}
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3125】CITY 插头dp的更多相关文章

  1. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  2. ural1519插头DP

    1519. Formula 1 Time limit: 1.0 second Memory limit: 64 MB Background Regardless of the fact, that V ...

  3. 插头DP学习笔记——从入门到……????

    我们今天来学习插头DP??? BZOJ 2595:[Wc2008]游览计划 Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该 ...

  4. RUAL1519 Formula 1 【插头DP】

    RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...

  5. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  6. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  7. bzoj3125: CITY 题解

    3125: CITY Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 486  Solved: 213[Submit][Status][Discuss] ...

  8. [专题总结]初探插头dp

    彻彻底底写到自闭的一个专题. 就是大型分类讨论,压行+宏定义很有优势. 常用滚动数组+哈希表+位运算.当然还有轮廓线. Formula 1: 经过所有格子的哈密顿回路数. 每个非障碍点必须有且仅有2个 ...

  9. 「总结」插头$dp$

    集中做完了插头$dp$ 写一下题解. 一开始学的时候还是挺蒙的. 不过后来站在轮廓线$dp$的角度上来看就简单多了. 其实就是一种联通性$dp$,只不过情况比较多而已了. 本来转移方式有两种.逐行和逐 ...

随机推荐

  1. 20155339 《信息安全技术》实验二、Windows口令破解实验报告

    20155339 <信息安全技术>实验二.Windows口令破解实验报告 实验目的 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 系统环境 Windo ...

  2. DataGrid中的DataGridCheckBoxColumn用法 ..

    <my:DataGridCheckBoxColumn Header=" /> private void btnDeleteNote_Click(object sender, Ro ...

  3. [agc006E]Rotate 3x3

    Description 给你一个3*N的网格,位置为(i,j)的网格上的数为i+3(j-1).每次选一个3*3的网格旋转180度,问最后能否使得网格(i,j)的值为ai,j.(5≤N≤105) 如图: ...

  4. 使用WinIO库实现保护模式下的IO和内存读写

    问题已解决: 原因是函数的调用方式与WinIO中不一致,使用的时候漏掉了__stdcall. 函数原定义为: 在实际的GPIO读写中遇到以下问题: SetPortVal可正常写入,但是GetPortV ...

  5. SimpleDateFormat,Calendar 线程非安全的问题

    SimpleDateFormat是Java中非常常见的一个类,用来解析和格式化日期字符串.但是SimpleDateFormat在多线程的环境并不是安全的,这个是很容易犯错的部分,接下来讲一下这个问题出 ...

  6. DataGrid中Combox bingding string

    DataGrid列中绑定Combox 正常情况下的Combox绑定回传不会失效:但是在DataGrid中选择Combox属性后不会回传:即调用Set属性 如图中的模板: 显示的方式有三种: 第一种: ...

  7. git分支在团队中的使用

    须知 在介绍分支常用操作之前 我们需要知道几点: 1.主干不允许做任何修改结构或者业务的操作. 有两种情况可以修改主干: 就是当前主干已经是有问题的,合并后出问题发布不了. 修改与业务无关的配置文件, ...

  8. 牛客小白月赛9H论如何出一道水题(两个连续自然数互质)

    题面 记录一下...连续得两个自然数互质,这题再特判一下1的情况 #include<bits/stdc++.h> using namespace std; int main() { lon ...

  9. 英特尔® 实感™ 深度摄像头代码示例 – R200 摄像头数据流

    英特尔开发人员专区原文地址 简介 该可下载代码示例展示了如何使用面向 Windows 的英特尔® 实感™ SDK* 捕捉和查看用 C#/XAML 编写的原始 R200 摄像头数据流. Visual S ...

  10. .net core 2.1.3可能引发Could not load file or assembly XXXXX的错误

    参考文档: https://github.com/aspnet/Home/issues/3503 写在前面 感觉自己现在干的活离开发越来越远了啊,不过也很好,每天能学到不少东西,中文的,英文的,永远也 ...