BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description

Input

Output
Sample Input
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet
Sample Output
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------
【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。
HINT
总共10个测试点,数据范围满足:
测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。
Solution
自闭了
Code
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define N (100009)
#define LL long double
#define MAX 1e18
using namespace std; struct Node{int l,r,p;}q[N];
int T,n,l,p;
LL sum[N],f[N];
char s[N][]; LL Calc(int j,int i)
{
return f[j]+pow(abs(sum[i]-sum[j]+i-j--l),p);
} int Find(Node t,int x)
{
int l=t.l,r=t.r,ans=t.r+;
while (l<=r)
{
int mid=(l+r)>>;
if (Calc(x,mid)<=Calc(t.p,mid))
ans=mid,r=mid-;
else l=mid+;
}
return ans;
} void DP()
{
int head=,tail=;
q[]=(Node){,n,};
for (int i=; i<=n; ++i)
{
if (head<=tail && i>q[head].r) head++;
f[i]=Calc(q[head].p,i);
if (head>tail || Calc(i,n)<=Calc(q[tail].p,n))
{
while (head<=tail && Calc(i,q[tail].l)<=Calc(q[tail].p,q[tail].l)) tail--;
if (head>tail) q[++tail]=(Node){i,n,i};
else
{
int now=Find(q[tail],i);
q[tail].r=now-;
q[++tail]=(Node){now,n,i};
}
}
}
} int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d",&n,&l,&p);
for (int i=; i<=n; ++i)
scanf("%s",s[i]);
for (int i=; i<=n; ++i)
sum[i]=sum[i-]+strlen(s[i]);
DP();
if (f[n]>MAX) puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
}
BZOJ1563:[NOI2009]诗人小G(决策单调性DP)的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
随机推荐
- SQL 之连接查询
概述:INNER JOIN.LEFT JOIN.LIGHT JOIN.FULL JOIN. 一.INNER JOIN INNER JOIN 关键字在表中存在至少一个匹配时返回行. 语法: select ...
- thinkphp htmlspecialchars_decode
一 百度编辑器 与 htmlspecialchars_decode *Thinkphp百度编辑器 存的时候为了安全把进行了字符转换,数据库: <p> 测试测试</ ...
- [javaSE] 多线程(售票例子)
需求:简单的买票程序,多个窗口卖票,多线程 定义一个类Ticket实现Runnable接口, 定义成员属性int类型的票数nums 实现run()方法,run方法中 while(true)的死循环,打 ...
- spring与dwr整合实现js直接使用java代码
此文章是基于 搭建Jquery+SpringMVC+Spring+Hibernate+MySQL平台 一. jar包介绍 1. dwr-3.0.1.jar,支持 spring 4.3.4 的最低版本 ...
- eclipse中实现文本换行
Eclipse 使用系统内置的“ Text Editor ”做为文本编辑器,这个文本编辑器有一个问题,就是文本无法换行. 扩展插件 WordWrap 可以实现文本换行 安装方法: ...
- Oracle数据库基本操作 (六) —— 数据的导出与导入
一.cmd 下登录oracle数据库下的指定用户 方式一:命令行明文连接登录 打开cmd,输入:sqlplus/nolog 输入:conn username/passworld@数据库实例名 方式二: ...
- 零基础学python习题 - 进入python的世界
1. python拥有以下特性:面向对象的特性.动态性.内置的数据结构.简单性.健壮性.跨平台性.可扩展性.强类型语言.应用广泛 2. python 需要 编译 3. 以下不属于python内置数据 ...
- UOJ#414. 【APIO2018】新家
传送门 首先二分答案 \(mid\),问题变成求区间 \([l-mid,r+mid]\) 在该年份的不同类型个数为 \(k\) 关于年份的限制可以离线下来 现在的问题就是区间数颜色,一个套路就是维护每 ...
- JSON转换和序列化的区别
序列化是将对象状态转换为可保持或可传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数据.将对象的状态信息转换为可以存储或传输的窗体的过程. 在序列 ...
- python模拟登陆豆瓣——简单方法
学爬虫有一段时间了,前面没有总结又重装了系统,导致之前的代码和思考都没了..所以还是要及时整理总结备份.下面记录我模拟登陆豆瓣的方法,方法一登上了豆瓣,方法二重定向到了豆瓣中“我的喜欢”列表,获取了第 ...