题目

描述

  • $y_i=x_i^T\beta+\epsilon_i$
    $\epsilon_i\sim N(0,\sigma^2)$
  • 已有训练集$\tau$,其中$X:n\times p,y:n\times 1,\epsilon:n\times 1$
    使用最小二乘得到$\hat{\beta}=\left(X^TX\right)^{-1}X^Ty$
    $y=X\beta+\epsilon$

  • 需要预测点$x_0$的値$y_0$

题2.7

  • 准备

    • $E(y_0)=E(x_0^T\beta+\epsilon_0)=E(x_0^T\beta)+E(\epsilon_0)=x_0^T\beta+0$
    • $E[\left(y_0-E(y_0)\right)^2]=E[\left(x_0^T\beta+\epsilon_0-x_0^T\beta\right)^2]=E[\epsilon_0^2]=\sigma^2$
    • $\hat{y_0}=x_0^T\hat{\beta}=x_0^T\left(X^TX\right)^{-1}X^T\left(X\beta+\epsilon\right)\\ \ =x_0^T\left(X^TX\right)^{-1}X^TX\beta+x_0^T\left(X^TX\right)^{-1}X^T\epsilon\\ \ =x_0^T\beta+x_0^T\left(X^TX\right)^{-1}X^T\epsilon\\ \ =x_0^T\beta+\sum_i a_i\epsilon_i$ <br>其中$a_i=\left[x_0^T\left(X^TX\right)^{-1}X^T\right]_i$
    • $E(\hat{y_0})=E(x_0^T\beta+\sum_i a_i\epsilon_i)=x_0^T\beta+\sum_i E(a_i)E(\epsilon_i)=x_0^T\beta$
      这里由于$X$由某分布产生,所以$E(a_i)$不是简单常数
  • 题解

    $EPE(x_0)=\int\int\left(y_0-\hat{y_0}\right)^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ =\int\int\left[\hat{y_0}-E(\hat{y_0})+E(\hat{y_0})-y_0\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ =\int\left[\hat{y_0}-E(\hat{y_0})\right]^2p(\hat{y_0})\mathrm{d}\hat{y_0}+\int\int\left[E(\hat{y_0})-y_0\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}+2\times 0\\ \ ={Var}_\tau(\hat{y_0})+\int\int\left[y_0-E(y_0)+E(y_0)-E(\hat{y_0})\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ ={Var}_\tau(\hat{y_0})+\int\left[y_0-E(y_0)\right]^2p(y_0)\mathrm{d} y_0+\left[E(y_0)-E(\hat{y_0}\right]^2+2\times 0\\ \ ={Var}_\tau(\hat{y_0})+\sigma^2+0^2$

    ${Var}_\tau(\hat{y_0})=E\left[\hat{y_0}-E(\hat{y_0})\right]^2\\ \ =E\left[x_0^T\beta+\sum_i a_i\epsilon_i-x_0^T\beta\right]^2=E\left[\sum_i\sum_j a_ia_j\epsilon_i\epsilon_j\right]\\ \ =E\left[ \sum_i a_i^2\epsilon_i^2 \right]+E\left[\sum_i\sum_{j:j\neq i} a_ia_j\epsilon_i\epsilon_j\right]\\ \ =\sum_iE(a_i^2)E(\epsilon_i^2)+\sum_i\sum_{j:j\neq i} E(a_ia_j)E(\epsilon_i)E(\epsilon_j)\\ \ =\sigma^2E(\sum_i a_i^2)+0=\sigma^2E\left(x_0^T\left(X^TX\right)^{-1}X^TX\left(X^TX\right)^{-1}x_0\right)\\ \ =\sigma^2E\left(x_0^T\left(X^TX\right)^{-1}x_0\right)$

题2.8

  • 准备

    • 假设$E(x^{(i)})=0,i=1...p$,即每个维度的期望都为0

      $X^TX$得到$p\times p$的矩阵

      $X_{:i}$表示$X$的第$i$列,即训练集输入部分的第i个维度

      $X_{:i}^TX_{:i}=\sum_j^N {x_j^{(i)}}^2=N\ \frac{1}{N}\sum_j^N (x_j^{(i)}-E(x^{(i)}))^2=N\hat{Var}(x^{(i)})$得到对角元素

      $X_{:i}^TX_{:j}=\sum_t^N x_t^{(i)}x_t^{(j)} = N\ \frac{1}{N} (x_t^{(i)}-E(x^{(i)}))(x_t^{(j)}-E(x^{(j)}))=N\hat{Cov}(x^{(i)},x^{(j)})$

      当$N\to \infty $,$X^TX \to NCov(x)$
    • $K:p\times p,b:p\times 1$

      $trace Kbb^T=\sum_i {[Kbb^T]}_{ii}=\sum_i \sum_j K_{ij}{[bb^T]}_{ji}=\sum_i \sum_j K_{ij}b_ib_j$

      $b^TKb=\sum_i {b^T}_{1i}{[Kb]}_{i1}=\sum_i \sum_j b_iK_{ij}b_j$

      $trace Kbb^T=b^TKb$
  • 题解

    $E\left(x_0^T\left(X^TX\right)^{-1}x_0\right)\sim E\left(x_0^T{Cov(x)}^{-1}x_0\right)/N\\ \ =E\left(trace {Cov(x)}^{-1}x_0x_0^T\right)/N\\ \ =trace {Cov(x)}^{-1}E(x_0x_0^T)/N=trace {Cov(x)}^{-1}Cov(x)/N\\ \ =trace I/N=p/N$

    $EPE(x_0)=(p/N+1)\sigma^2$

2.x ESL第二章习题2.5的更多相关文章

  1. 2.x ESL第二章习题 2.8

    题目 代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 ...

  2. 2.x ESL第二章习题2.4

    题目 准备 $x_i\sim N(0,1)$,有$\sum_i^n x_i^2 \sim \chi^2(n)$其中$n$称为自由度,卡方分布的均值即其自由度 $x_i\sim N(\mu_i,\sig ...

  3. 统计学习导论:基于R应用——第二章习题

    目前在看统计学习导论:基于R应用,觉得这本书非常适合入门,打算把课后习题全部做一遍,记录在此博客中. 第二章习题 1. (a) 当样本量n非常大,预测变量数p很小时,这样容易欠拟合,所以一个光滑度更高 ...

  4. Python编程快速上手-让繁琐工作自动化-第二章习题及其答案

    Python编程快速上手-让繁琐工作自动化-第二章习题及其答案 1.布尔数据类型的两个值是什么?如何拼写? 答:True和False,使用大写的T和大写的F,其他字母是小写. 2.3个布尔操作符是什么 ...

  5. 最小正子序列(序列之和最小,同时满足和值要最小)(数据结构与算法分析——C语言描述第二章习题2.12第二问)

    #include "stdio.h" #include "stdlib.h" #define random(x) (rand()%x) void creat_a ...

  6. 中级Perl第二章习题

    2. 4. 1. 习题1 [15 分钟] 写一个程序从命令行取一个文件清单, 然后用grep 把那些文件大小在1000 字节以内的文件找出来.用map 把这个清单里的每个字串前加四个空格并在 字串后面 ...

  7. 算法竞赛入门经典第二版第二章习题-(练习Java和C++语法)

    习题2-1水仙花数(daffodil) 输出1000-999中所有的水仙花数.若三位数ABC满足ABC = A3+B3+C3,则称其为水仙花数. Java: package suanfa; publi ...

  8. 《Python自然语言处理》第二章-习题解答-练习6

    问题描述:在比较词表的讨论中,创建一个对象叫做translate,通过它你可以使用德语和意大利语词汇查找对应的英语词汇.这种方法可能会出现什么问题,你能提出一个办法来避免这个问题吗? 虽然这是一道初级 ...

  9. Python《学习手册:第二章-习题》

    什么是Python解释器? Python解释器是运行Python程序的程序. 什么是源代码? 源代码是为程序所写的语句:它包括文本文件(通常以.py为文件名结尾)的文件. 什么是字节码? 字节码是Py ...

随机推荐

  1. java实现文件编码监测

    java实现文件编码监测 最近在做一个文档的翻译项目,可文档的编码不知道,听头疼的.尝试了很多方法最后发现JCharDet这个工具可以轻松解决这个问题.于是作此笔记希望日后提醒自己以及帮助又需要的人. ...

  2. 用VS2013+VELT-0.1.4进行海思平台 Linux内核 的开发

    快乐虾 http://blog.csdn.net/lights_joy/(QQ群:Visual EmbedLinux Tools 375515651) 欢迎转载,但请保留作者信息 本文仅适用于vs20 ...

  3. UESTC_秋实大哥与花 2015 UESTC Training for Data Structures<Problem B>

    B - 秋实大哥与花 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  4. java 8 中lambda表达式学习

    转自 http://blog.csdn.net/renfufei/article/details/24600507 http://www.jdon.com/idea/java/10-example-o ...

  5. MySQL无法重启问题解决Warning: World-writable config file ‘/etc/my.cnf’ is ignored

    MySQL无法重启问题解决Warning: World-writable config file ‘/etc/my.cnf’ is ignored

  6. [置顶] think in java interview番外篇-谈程序员如何修练英语

    一.程序员对英语能力的重视度和能力要求应该是在各行各业中排在比较靠前的 这样说吧,英语程度的好坏直接影响着一个程序员的编程.开发.创新能力. 道理很简单: 1. 计算机和软件是用英语创造出来的 2. ...

  7. eclipse中误删了servers文件

    Eclipse中误删了servers文件,需要重新添加tomcat服务器,这时就会遇到在New Server对话框中选择了Tomcat 6/7后却无法单击"Next"按钮的问题,如 ...

  8. JsonKit 解析

    - (void)requestMapListData { NSURL *url = [NSURL URLWithString:[NSString stringWithFormat:@"&qu ...

  9. C#.Net前台线程与后台线程的区别

    本文来自:http://www.cnblogs.com/zfanlong1314/archive/2012/02/26/2390455.html .Net的公用语言运行时(Common Languag ...

  10. 设置Android设备在睡眠期间始终保持WLAN开启的代码实现

    MainActivity例如以下: package cc.ab; import android.os.Bundle; import android.provider.Settings; import ...