HDOJ 3635 并查集- 路径压缩,带秩合并
思路来源:http://blog.csdn.net/niushuai666/article/details/6990421
题目大意:
初始时,有n个龙珠,编号从1到n,分别对应的放在编号从1到n的城市中。
现在又2种操作:
T A B,表示把A球所在城市全部的龙珠全部转移到B城市。(第一次时,因为A球所在的城市只有一个球,所以只移动1个,如果有多个,则全部移动)。
Q A,表示查询A。要求得到的信息分别是:A现在所在的城市,A所在城市的龙珠数目,A转移到该城市移动的次数(如果没有移动就输出0)
解题思路:
并查集的应用。但是这道题让我纠结了很久,首先是转移次数怎么确定,经过思考,我们可以开一个辅助数组,当转移一次时,我们就把要转移的城市的全部龙珠的转移次数全部做+1操作。但是遇到的问题就是超时问题,我们需要遍历全部龙珠,找出要转移的城市的全部龙珠然后才能够+1,这样,很容易就超时了。
反复想了很久,想了另一个办法,就是通过路径压缩来更新转移的次数,比如每次移动时,我只需要把这个城市的根结点的转移次数+1,等到以后路径压缩时,子结点自己移动的次数加上根结点移动的次数,就是这个结点总共的移动次数,不明白的可以自己动手画画。。
另一个蛋疼的问题就是printf。。。上面那个问题纠结了10几分钟就搞定了,这个问题一下子搞了3个小时,快悲剧死。。。。。。。
不过也算不错,知道printf是倒序输出的,它默认的输出是从右到左,当最右边的变量受前面变量的影响时,答案肯定错误,因为它先计算的是最右边的值。。。好吧,我承认自己C语言学的还不行,要不然也不会在这里翻船了。。。看来一些简单的东西也是值得研究的。。。ORZ!~
通过这道题,对并查集的查找又有了一定的认识,初步理解了路径压缩的好处,这里,根结点的转移次数不是直接加上根结点的移动次数,而是在路径压缩的过程中逐层累加,比如有4层,根结点为1,然后第二层2,第三层3,第四层4.那么,第一层路径压缩过程中进入第二层,然后第三层,然后第四层,第四层也就是根,找到根结点,返回第三层,第三层+上第四层的转移次数,然后返回第二层,第二层转移次数加上第三层转移次数,返回第一层,第一层转移次数加上第二层转移次数,同时,在这个过程中也把下面3层的结点的父节点直接更新为和根结点,也就是1相连,查找结束后,称为2层结构,根结点1在一层,234都处于第二层。这样的一个过程是通过递归调用本身完成的,跟数据结构(严蔚敏版本)讲解栈那节的汉诺塔过程相似,如果想完全掌握,推荐仔细看教材+自己模拟,这样就可以理解了。。。。。
#include <stdio.h>
#define MAXSIZE 10011 int root[MAXSIZE], rank[MAXSIZE], num[MAXSIZE];
void init(){
for(int i = ; i < MAXSIZE; ++i){
root[i] = i, rank[i] = , num[i] = ;
}
}
int find(int x){
if(root[x] == x) return x;
int t = root[x];
root[x] = find(root[x]);
num[x] += num[t];
return root[x];
}
void Union(int x, int y){
int ra = find(x);
int rb = find(y);
root[ra] = rb;
rank[rb] += rank[ra];
num[ra] = ;
}
int main(){
int t, i, j, n, q, a, b, caseNum = ;
char cmd;
scanf("%d",&t);
while(t--){
printf("Case %d:\n",++caseNum);
init();
scanf("%d%d",&n,&q);
while(q--){
getchar();
scanf("%c ",&cmd);//使用cin会爆时间
if(cmd == 'T'){
scanf("%d%d",&a,&b);
Union(a,b);
}
else{
scanf("%d",&a);
int t = find(a);
printf("%d %d %d\n",t,rank[t],num[a]);
}
}
}
return ;
}
HDOJ 3635 并查集- 路径压缩,带秩合并的更多相关文章
- HDU 3635 并查集+路径压缩+记录每个点移动次数
题意: 给定n个点 oper个操作 每个点有1个龙珠 下面2种操作: T u v 把u点所有龙珠搬到v Q u 问u点当前所在城市 u点所在城市有几个龙珠 u点被移动几次 思路: 并查集可以求出 u ...
- 并查集+路径压缩(poj1988)
http://poj.org/problem?id=1988 Cube Stacking Time Limit: 2000MS Memory Limit: 30000K Total Submiss ...
- hdu 1558 线段相交+并查集路径压缩
Segment set Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 【数轴涂色+并查集路径压缩+加速】C. String Reconstruction
http://codeforces.com/contest/828/problem/C [题意] [思路] 因为题目保证一定有解,所有优化时间复杂度的关键就是不要重复染色,所以我们可以用并查集维护区间 ...
- 并查集 + 路径压缩(经典) UVALive 3027 Corporative Network
Corporative Network Problem's Link Mean: 有n个结点,一开始所有结点都是相互独立的,有两种操作: I u v:把v设为u的父节点,edge(u,v)的距离为ab ...
- Never Wait for Weights(带权并查集+路径压缩)
题目链接:http://acm.sdibt.edu.cn/vjudge/contest/view.action?cid=2209#problem/F !a b w 表示b比a大w ? a b 输出 ...
- LA 并查集路径压缩
题目大意:有n个节点,初始时每个节点的父亲节点都不存在.有两种操作 I u v:把点节点u的父亲节点设为v,距离为|u-v|除以1000的余数.输入保证执行指令前u没有父亲节点. E u:询问u到根节 ...
- snnu(1110) 传输网络 (并查集+路径压缩+离线操作 || 线段树)
1110: 传输网络 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 43 Solved: 18[Submit][Status][Web Board] ...
- - > 并查集+路径压缩(详解)(第一节)
先举一个友爱的例子解释一下并查集: 话说江湖上散落着各式各样的大侠,有上千个之多. 他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架.但大侠们有一个优点就是讲义 ...
随机推荐
- 解决eclipse中maven出现的Failure to transfer XXX.jar的问题
这个问题很烦,试了好几次都没有彻底解决,今天终于找到解决办法了. 问题主要出在,maven在下载jar的过程中出现了中断或者错误问题(不仅仅是eclipse,其他IDE也一样) 解决办法: 移除之前的 ...
- python自学笔记(六)二进制与位移
一.二进制 a = 1 bin(a)-->ob1 #python内置方法 ob 表示二进整型制格式 二.难缠符号 1.位移二进制的位 >> 右位移,想象成 切肉切去最后一位 例如 ...
- 如何管理安卓android手机下google(谷歌)的通讯录联系人账户
andorid手机都自带通讯录备份功能,但是如何管理,一直是一些人头疼的问题.经常在手机备份还原之后发现很多联系人都有重复. 1.打开 :https://mail.google.com/ 用你的谷歌账 ...
- Android系统智能指针的设计思路(轻量级指针、强指针、弱指针)
本博客为原创,转载请注明出处,谢谢. 参考博文:Android系统的智能指针(轻量级指针.强指针和弱指针)的实现原理分析 C++中最容易出错的地方莫过于指针了,指针问题主要有两类,一是内存泄露,二是无 ...
- [转]IE和Firefox兼容性问题及解决方法
今天测试代码时,发现不少IE可以运行的ajax,但在FF中报错.IE和Firefox(火狐)在JavaScript方面的不兼容及统一方法总结如下: 1.兼容firefox的 outerHTML,FF中 ...
- Delphi 的动态数组
传统的Pascal 语言其数组大小是预先确定的,当你用数组结构声明数据类型时,你必须指定数组元素的个数.专业程序员也许知道些许动态数组的实现技术,一般是采用指针,用手工分配并释放所需的内存. Delp ...
- 百度——LBS.云 v2.0——云存储的POI创建和删除--Android 源码
如有疑问请联系:QQ936467727 需要注意的几点问题: 1.密钥是http://lbsyun.baidu.com/apiconsole/key申请的,密钥类型是浏览器端 2.geotable_i ...
- [cocos2d-x]用CCSpriteBatchNode进行文理贴图的优化
引言: 我们在进行手机游戏开发的过程中,由于手机的内存资源是有限的,那么对纹理贴图的优化是非常有必要的,有可能相同的功能,优化的好与不好对内存资源的消耗是非常明显的,下面我就用一个例子来说明一下. 说 ...
- c#Winform程序的toolStripButton自己定义背景应用演示样例源代码
C# Winform程序的toolStrip中toolStripButton的背景是蓝色的,怎样改变背景及边框的颜色和样式呢? 实现此功能须要重写toolStripButton的Paint方法 这里仅 ...
- Java多线程之synchronized(五)
上篇介绍了用synchronized修饰static方式来实现“Class 锁”,今天要介绍另一种实现方式,synchronized(class)代码块,写法不一样但是作用是一样的.下面我附上一段代码 ...