Storm实现单词计数
package com.mengyao.storm; import java.io.File;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils; /**
* Storm中的单词计数,拓扑结构为InputSpout->SplitBolt->CountBolt = WordCountTopology
* @author mengyao
*
*/
@SuppressWarnings("all")
public class WordCountTopology { public static class InputSpout extends BaseRichSpout{ private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector; /**
* 实例化该Spout时预处理,仅会被调用一次,类似于MapReduce中Mapper/Reducer的setup()方法
*/
@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
} /**
* 死循环发射每行消息
*/
@Override
public void nextTuple() {
Collection<File> listFiles = FileUtils.listFiles(new File("D:/"), new String[]{"log"}, false);
for (File file : listFiles) {
try {
List<String> lines = FileUtils.readLines(file);
for (String line : lines) {
this.collector.emit(new Values(line));
System.err.println("==== InputSpout:"+line+" ====");
}
FileUtils.moveFile(file, new File(file.getAbsoluteFile()+".tmp"));
} catch (IOException e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
} /**
* 声明字段“line”提供给下一个Bolt组件订阅
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
} } public static class SplitBolt extends BaseRichBolt{ private Map stormConf;
private TopologyContext context;
private OutputCollector collector; /**
* 实例化该Bolt时预处理,仅会被调用一次,类似于MapReduce中Mapper/Reducer的setup()方法
*/
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} /**
* 死循环发送每个单词
*/
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\t");
for (String word : words) {
this.collector.emit(new Values(word));
System.err.println("==== SplitBolt:"+word+" ====");
}
} /**
* 声明字段“word”提供给下一个Bolt组件订阅
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} } public static class CountBolt extends BaseRichBolt{ private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
HashMap<String, Long> map = new HashMap<String, Long>(); /**
* 实例化该Bolt时预处理,仅会被调用一次,类似于MapReduce中Mapper/Reducer的setup()方法
*/
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} @Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Long value = map.get(word);
if (value==null) {
value=0L;
}
value++;
map.put(word, value);
for (Entry<String, Long> entry : map.entrySet()) {
System.err.println("==== CountBolt:"+entry+" ====");
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
} } public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException {
String topologyName = WordCountTopology.class.getSimpleName();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("input", new InputSpout());
builder.setBolt("split", new SplitBolt()).shuffleGrouping("input");
builder.setBolt("count", new CountBolt()).shuffleGrouping("split"); Config config = new Config();
config.setDebug(true); if (args!=null && args.length>0) { //如果是生产环境中使用集群模式提交拓扑
config.setNumWorkers(3);
StormSubmitter.submitTopology(topologyName, config, builder.createTopology());
} else { //否则使用本地模式提交拓扑
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(topologyName, config, builder.createTopology());
Utils.sleep(1000*100);
cluster.killTopology(topologyName);
cluster.shutdown();
} }
} 依赖的jar包如下图:
Storm实现单词计数的更多相关文章
- 大数据学习——Storm学习单词计数案例
需求:计算单词在文档中出现的次数,每出现一次就累加一次 遇到的问题 这个问题是<scope>provided</scope>作用域问题 https://www.cnblogs. ...
- storm(5)-分布式单词计数例子
例子需求: spout:向后端发送{"sentence":"my dog has fleas"}.一般要连数据源,此处简化写死了. 语句分割bolt(Split ...
- 【Storm】storm安装、配置、使用以及Storm单词计数程序的实例分析
前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永 ...
- Storm实现单词统计代码
import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.HashM ...
- 使用Scala实现Java项目的单词计数:串行及Actor版本
其实我想找一门“具有Python的简洁写法和融合Java平台的优势, 同时又足够有挑战性和灵活性”的编程语言. Scala 就是一个不错的选择. Scala 有很多语言特性, 建议先掌握基础常用的: ...
- MapReduce之单词计数
最近在看google那篇经典的MapReduce论文,中文版可以参考孟岩推荐的 mapreduce 中文版 中文翻译 论文中提到,MapReduce的编程模型就是: 计算利用一个输入key/value ...
- 自定义实现InputFormat、OutputFormat、输出到多个文件目录中去、hadoop1.x api写单词计数的例子、运行时接收命令行参数,代码例子
一:自定义实现InputFormat *数据源来自于内存 *1.InputFormat是用于处理各种数据源的,下面是实现InputFormat,数据源是来自于内存. *1.1 在程序的job.setI ...
- hadoop笔记之MapReduce的应用案例(WordCount单词计数)
MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...
- 第一章 flex单词计数程序
学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 ...
随机推荐
- [转] Linux写时拷贝技术(copy-on-write)
PS:http://blog.csdn.net/zxh821112/article/details/8969541 进程间是相互独立的,其实完全可以看成A.B两个进程各自有一份单独的liba.so和l ...
- [转] gdb 查看vector, list, map 内容
转:http://blog.chinaunix.net/uid-13982689-id-34282.html先下载gdb_stl_utils.tar.gz, extract it, and run m ...
- 27个Jupyter Notebook使用技巧及快捷键(翻译版)
Jupyter Notebook Jupyter Notebook 以前被称为IPython notebook.Jupyter Notebook是一款能集各种分析包括代码.图片.注释.公式及自己画的图 ...
- Windows下将硬盘由MBR转为GPT
打开命令提示符,输入 diskpart 进入diskpart提示符.Win7/Vista用户可以直接在开始菜单的搜索框中输入diskpart回车即可打开diskpart提示符. 在diskpart提示 ...
- JS类百度的动态提示框思路及完成
参考的代码来自这里: http://www.jb51.net/article/28075.htm 不过说实话,这个网站太烂了,不适合看代码,另外写代码的人是个大牛,但是却没有模块化思想,所以朕不高兴直 ...
- VM下Linux网卡丢失(pcnet32 device eth0 does not seem to be ...)解决方案
系统启动日志:Bringing up interface eth0: pcnet32 device eth0 does not seepresent, delaying initialization. ...
- 软件测试 homework1
申明数组变量后,在使用的时候,出现了向上溢出的情况(程序运行过程中出现的),导致最后答案不正确,经过输出数组数据发现错误, 现在在申明数组的时候都会大致估算一下,确认申明什么样的数组不会导致溢出. 在 ...
- (二)Angularjs - 入门(2)
AngularJS AJAX AngularJS提供了$http控制,可以用来获取服务器端的数据.服务器通过一个数据库的读取操作来获取需要的数据.注意AngularJS需要JSON格式的数据.一旦数据 ...
- 武汉科技大学ACM:1008: 零起点学算法64——回型矩阵
Problem Description 输出n*m的回型矩阵 Input 多组测试数据 每组输入2个整数 n和m(不大于20) Output 输出n*m的回型矩阵,要求左上角元素是1,(每个元素占2个 ...
- C/C++安全编码-字符串
1 字符串 1.1 字符串基础 字符串提供命令行参数.环境变量.控制台输入.文本文件及网络连 接,提供外部输入方法来影响程序的行为和输出,这也是程序容易出错的地方.字符串是一个概念,并不是C/ ...