UVa 11584 Partitioning by Palindromes (简单DP)
题意:给定一个字符串,求出它最少可分成几个回文串。
析:dp[i] 表示前 i 个字符最少可分成几个回文串,dp[i] = min{ 1 + dp[j-1] | j-i是回文}。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define debug() puts("++++");
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e3 + 5;
const int mod = 2000;
const int dr[] = {-1, 1, 0, 0};
const int dc[] = {0, 0, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
char s[maxn];
int dp[maxn]; bool judge(int i, int j){
while(i < j){
if(s[i] != s[j]) return false;
++i, --j;
}
return true;
} int main(){
int T; cin >> T;
while(T--){
scanf("%s", s);
n = strlen(s);
memset(dp, INF, sizeof dp);
dp[0] = 1;
for(int i = 1; i < n; ++i){
for(int j = 0; j < i; ++j)
if(judge(j, i)) dp[i] = min(dp[i], 1 + dp[j-1]);
else dp[i] = min(dp[i], dp[i-1]+1);
}
printf("%d\n", dp[n-1]); }
return 0;
}
UVa 11584 Partitioning by Palindromes (简单DP)的更多相关文章
- uva 11584 Partitioning by Palindromes 线性dp
// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...
- UVA - 11584 Partitioning by Palindromes[序列DP]
UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...
- UVa 11584 Partitioning by Palindromes【DP】
题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) ...
- UVA 11584 "Partitioning by Palindromes"(DP+Manacher)
传送门 •题意 •思路一 定义 dp[i] 表示 0~i 的最少划分数: 首先,用马拉车算法求解出回文半径数组: 对于第 i 个字符 si,遍历 j (0 ≤ j < i),判断以 j 为回文中 ...
- 区间DP UVA 11584 Partitioning by Palindromes
题目传送门 /* 题意:给一个字符串,划分成尽量少的回文串 区间DP:状态转移方程:dp[i] = min (dp[i], dp[j-1] + 1); dp[i] 表示前i个字符划分的最少回文串, 如 ...
- UVA 11584 - Partitioning by Palindromes DP
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11584 Partitioning by Palindromes (字符串区间dp)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVa 11584 - Partitioning by Palindromes(线性DP + 预处理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 11584 Partitioning by Palindromes(划分成回文串)(dp)
题意:输入一个由小写字母组成的字符串,你的任务是把它划分成尽量少的回文串,字符串长度不超过1000. 分析: 1.dp[i]为字符0~i划分成的最小回文串的个数. 2.dp[j] = Min(dp[j ...
随机推荐
- JS--截取字符串常用方法详细
使用 substring()或者slice() 函数:split() 功能:使用一个指定的分隔符把一个字符串分割存储到数组 例子: str=”jpg|bmp|gif|ico|png”; arr=the ...
- BZOJ 2809 APIO 2012 dispatching 平衡树启示式合并
题目大意:给出一棵树,每个节点有两个值,各自是这个忍者的薪水和忍者的领导力.客户的惬意程度是这个点的领导力乘可以取得人数.前提是取的人的薪水总和不超过总的钱数. 思路:仅仅能在子树中操作.贪心的想,我 ...
- Collection接口和Collections类的简单区别和讲解
这里仅仅进行一些简单的比较,如果你想要更加详细的信息话,请自己百度. 1.Collection: 是集合类的上层接口.本身是一个Interface,里面包含了一些集合的基本操作. Collection ...
- Machine Learning—Online Learning
印象笔记同步分享:Machine Learning-Online Learning
- [LeetCode] 038. Count and Say (Easy) (C++/Python)
索引:[LeetCode] Leetcode 题解索引 (C++/Java/Python/Sql) Github: https://github.com/illuz/leetcode 038. Cou ...
- SEO搜索引擎基础原理
- Deep Learning 36:python中的一些函数
1.map(function, sequence[, sequence, ...])函数:返回一个list作用:map的作用是以参数序列中的每一个元素调用function函数,返回包含每次functi ...
- 几个 PHP 的"魔术常量"
__LINE__ 文件中的当前行号. __FILE__ 文件的完整路径和文件名.如果用在被包含文件中,则返回被包含的文件名.自 PHP 4.0.2 起,__FILE__ 总是包含一个绝对路径(如果是符 ...
- Delphi通过POST传递参数给PHP
Delphi代码 ******************************************************************************************* ...
- android adb源码分析(5)【转】
本文转载自:http://blog.csdn.net/xgbing/article/details/52096880 本篇以“adb devices"命令为例,跟踪代码的执行流程. (1) ...