SG定理与SG函数
一个蒟蒻来口胡$SG$函数与$SG$定理。
要是发现有不对之处望指教。
首先我们来了解一下$Nim$游戏。
$Nim$游戏是公平组合游戏的一种,意思是当前可行操作仅依赖于当前局势。
而经典$Nim$游戏是指,一个地方放了$n$堆棋子,每堆棋子数目$a_i$给定。
两人轮流操作,每次操作从一堆中拿出任意数量的棋子。即最少拿一个,最多拿完。
拿完棋子的人胜。
如果两人都执行最优决策的话,胜负在刚开局时就已经确定了。
而在最有决策下,$Nim$游戏的胜负计算方式是:
若每堆棋子数量a_1^a_2^a_3^……^a_n=0则先手负,反之先手胜。
好像很玄学,怎么证明?
假设开局时a_1^a_2^a_3^……^a_n=0,
先手取走其中一堆的一些棋子,假设在$a_1$中去,那么式子变为a_1^a_2^a_3^……^a_n=k且$k!=0$。
此时一定存在一个$a_i$,满足二进制下$a_i$在$k$的最高位为$1$。
此时只要将$a_i$变为a_i ^ k,那么这$n$个数的异或和依然为$0$。
比如,原来集合中有{2,4,6},满足2^4^6=0;
先手拿走了6的一整堆,此时2^4^0=6;
而4与6满足性质,此时只需要让4变为4^6=2即可。
先手后手一直在拿走棋子,使得总数一直在减小,减小到的终点即0^0^0^……^0=0。
就一定是后手胜啦。
后来出题人们搞出了好多类似$Nim$游戏的博弈问题,而归根结底处理方法依然可以用异或法。
这就又衍生出了$SG$函数和$SG$定理。
先定义一下$mex$运算。
$mex$指对于一个非负整数集合不在其中的最小数。
举个例子,mex{}=0,mex{0,1,2,3}=4,mex{1,2,3,4,5}=0。
回到$SG$函数。
对于一个局势,不同的操作会产生不同的后果,产生不同的新局势。
当前局势的$SG$函数值,等于所有后继局势的$SG$函数的$mex$值。
比如说,当$Nim$游戏中只有一堆棋子时,对于每个棋子数$SG$函数计算如下:
SG[0]=mex{}=0
SG[1]=mex{0}=1
SG[2]=mex{0,1}=2
SG[3]=mex{0,1,2}=3
等等。
有什么用呢?
一个局势是$P-position$(先手必败)当且仅当其$SG$函数值为$0$。
哇好厉害啊。
接下来上$SG$定理:
对于任意有限多个公平组合游戏的组合,其$SG$函数值等于所有子游戏$SG$函数值的异或和。
能不能理解为,第一个游戏有好几堆棋子,第二个游戏有好几堆棋子……
结果整个游戏就是好几堆棋子,其$SG$函数等于所有堆的$SG$函数的异或和。
大概
就这些了。
模板靠手速,博弈靠智商
(o_o)
SG定理与SG函数的更多相关文章
- 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)
		博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ... 
- SG函数和SG定理【详解】
		在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ... 
- SG函数&&SG定理
		必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的 ... 
- (转载)--SG函数和SG定理【详解】
		在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ... 
- 组合游戏 - SG函数和SG定理
		在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ... 
- SG函数和SG定理(Sprague_Grundy)
		一.必胜点和必败点的概念 P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质: ... 
- HDU 1851 (巴什博奕 SG定理) A Simple Game
		这是由n个巴什博奕的游戏合成的组合游戏. 对于一个有m个石子,每次至多取l个的巴什博奕,这个状态的SG函数值为m % (l + 1). 然后根据SG定理,合成游戏的SG函数就是各个子游戏SG函数值的异 ... 
- HDU5795A Simple Nim SG定理
		A Simple Nim Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ... 
- HDU5724 Chess(SG定理)
		题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5724 Description Alice and Bob are playing a spe ... 
随机推荐
- hihocoder 1584  Bounce(找规律)
			传送门 题意 略 分析 我们观察几张图 发现菱形的边长为n-1和m-1的公约数 将图简化一下 接下来我们计算只经过一次的点,分成两类 1.与边相交 num1=x+y 2.未与边相交,在菱形内 num2 ... 
- rabbitMQ的使用
			介绍 一款消息队列数据库,类似redis发布订阅,但是rq 做了功能完善和数据持久化.在项目中,将一些无需即时返回且耗时的操作提取出来,进行了异步处理,而这种异步处理的方式大大的节省了服务器的请求响应 ... 
- mycat启动报错UnknownHostException(Temporary failure in name resolution)解决方法
			重启命令 ./mycat restart 查看日志 cd logs tail -f wrapper.log 报错信息 INFO | jvm 2 | 2018/05/09 11:28:28 | Erro ... 
- 51Nod 1174 区间中最大的数(RMQ)
			#include <iostream> #include <algorithm> #include <cstring> using namespace std; + ... 
- springMVC validator验证的使用
			http://blog.csdn.net/miketom155/article/details/45058195 1. 实现Validator接口,对数据进行校验 @RequestMapping(va ... 
- linux添加开机启动脚本
			[root@mysql ~]# ll /etc/rc.local lrwxrwxrwx. 1 root root 13 Mar 12 22:20 /etc/rc.local -> rc.d/rc ... 
- js封装xhr【重复造轮子】
			仿jquery ajax,不过功能没那么多.贴代码 --------------------------------------分割线--------------------------------- ... 
- v-bind和v-on
			v-bind指令用于设置HTML属性:v-bind:href 缩写为 :href <a :href="{{url}}">aa</a> v-on 指令用于绑 ... 
- apache mod_alias模块功能介绍
			我觉得mod_alias根mod_rewrite挺像的,都可以实现url的重写,而mod_alias可以实现简单的url重写的功能 ,而mod_rewrite可以实现比较复杂的重写.mod_alias ... 
- android开发学习 ------- 枚举类型在Android中的用法
			一般上为了简化代码,重用代码,设置标志位来表示不同的流程,这个标志位可以使用枚举类型来表示: 1:定义 public FbManner fbManer = FbManner.EMAIL; //给一个默 ... 
