题目:

https://www.luogu.org/problemnew/show/P2885

由于把每一根电线杆增加多少高度不确定,所以很难直接通过某种方法算出答案,考虑动态规划。

状态:f [ i ] [ j ]表示当第i根电线杆的高度为j时的最小代价和

转移:当前电线杆的高度只会影响它下一个电线杆的高度,所以就是用前一维的答案来更新后一维。在计算第i根电线杆和第i-1根电线杆时需要计算三部分答案:1.将第i根电线杆增加到j高度的代价 ( j - h [ i ])*(j - h [ i ] )。2.到第i-1根电线杆时的最小花费f [ i-1 ] [ k ](由于我们并不知道第i-1根电线杆的高度,所以需要枚举第i-1根电线杆的高度k)3. 第i根电线杆到第i-1根电线杆之间电线的代价( j - k )*C

由此我们得到转移方程:f [ i ] [ j ] = ( j - h [ i ] )^2 + min( f [ i - 1 ] [ k ] + | j - k |*C )

然而这需要我们用三重循环枚举,时间复杂度是O( n*C*C ),会超时(好像有人用这个卡过了。。。)。

优化:

我们把绝对值拆开来可以得到一个分段函数:

f [ i ] [ j ] = ( j - h [ i ] )^2 + min( f [ i - 1 ] [ k ] + j * C - k * C)  ,j>=k

f [ i ] [ j ] = ( j - h [ i ] )^2 + min( f [ i - 1 ] [ k ] + k * C - j * C )  ,j < k

我们把 j * C从min中提出来,就变成了:

f [ i ] [ j ] = ( j - h [ i ] )^2 + j * C + min( f [ i - 1 ] [ k ] - k * C)  ,j>=k

f [ i ] [ j ] = ( j - h [ i ] )^2 - j * C + min( f [ i - 1 ] [ k ] + k * C )  ,j < k

我们可以发现,min里面的东西只与k和i有关而与j无关,所以我们可以在外层枚举i,在内层预处理出f [ i - 1 ] [ k ] - k * C的前缀最小值和f [ i - 1 ] [ k ] + k * C的后缀最小值,然后再枚举j,这是就可以直接O(1)调用min(...)了。

同时由于每一维的状态只与上一维有关且不需要记录答案,所以可以通过滚动数组来将空间复杂度进一步优化到O(C)。

代码:(注意赋初值等细节)

 #include<bits/stdc++.h>
using namespace std;
int read()
{
int ans=;
char ch=getchar(),last=' ';
while(ch<''||ch>'')
{last=ch;ch=getchar();}
while(ch>=''&&ch<='')
{ans=ans*+ch-'';ch=getchar();}
if(last=='-')ans=-ans;
return ans;
}
const int M=1e5+,inf=1e9+;
int n,C,h[M],f[M][],m;
//f[i][j]表示第i根电线杆的高度为j时的最小代价和
int l[],r[];
int main()
{
n=read();C=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++)
h[i]=read(),m=max(m,h[i]);
for(int i=h[];i<=m;i++)
f[][i]=(i-h[])*(i-h[]);
for(int i=;i<=n;i++)
{
l[h[i-]-]=inf;
r[m+]=inf;
for(int k=h[i-];k<=m;k++)
l[k]=min(l[k-],f[i-][k]-k*C);
for(int k=m;k>=h[i];k--)
r[k]=min(r[k+],f[i-][k]+k*C);
for(int j=h[i-];j<=m;j++)
if(j>=h[i])f[i][j]=l[j]+(j-h[i])*(j-h[i])+C*j;
for(int j=m;j>=h[i];j--)
f[i][j]=min(f[i][j],r[j]-C*j+(j-h[i])*(j-h[i]));
}
int ans=inf;
for(int i=h[n];i<=m;i++)
ans=min(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

P2885 [USACO07NOV]电话线Telephone Wire——Chemist的更多相关文章

  1. P2885 [USACO07NOV]电话线Telephone Wire

    P2885 [USACO07NOV]电话线Telephone Wire 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话 ...

  2. [USACO07NOV]电话线Telephone Wire

    [USACO07NOV]电话线Telephone Wire 时间限制: 1 Sec  内存限制: 128 MB 题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N &l ...

  3. [luoguP2885] [USACO07NOV]电话线Telephone Wire(DP + 贪心)

    传送门 真是诡异. 首先 O(n * 100 * 100) 三重循环 f[i][j] 表示到第 i 个柱子,高度是 j 的最小花费 f[i][j] = min(f[i - 1][k] + abs(k ...

  4. 【USACO07NOV】电话线Telephone Wire

    题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N <= 100,000)根电线杆上, 第 i 根电线杆的高度为 height_i 米(1 <= heigh ...

  5. [USACO 07NOV]电话线Telephone Wire

    题目描述 Farmer John's cows are getting restless about their poor telephone service; they want FJ to rep ...

  6. DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885

    本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...

  7. 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...

  8. BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP

    BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...

  9. bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)

    1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 441  Solved: ...

随机推荐

  1. BZOJ——2697: 特技飞行

    http://www.lydsy.com/JudgeOnline/problem.php?id=2697 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: ...

  2. json三种类型小笔记

    JSON基本语法与图例 Object(对象类型)用{ }包含一系列无序的key–Value键值对表示,其中Key和Value之间用冒号分割,每个key-value之间用逗号分割. Array(数组类型 ...

  3. 关键字检索高亮标出-javasript/jQuery代码实现

    原文:http://www.open-open.com/code/view/1454504432089 此方法传入2个参数,一个是被检索内容所在的表单或者HTML元素的ID,另一为关键字,多个关键字的 ...

  4. 去哪网实习总结:easyui在JavaWeb中的使用,以datagrid为例(JavaWeb)

    本来是以做数据挖掘的目的进去哪网的,结构却成了系统开发. . . 只是还是比較认真的做了三个月.老师非常认同我的工作态度和成果.. . 实习立即就要结束了,总结一下几点之前没有注意过的变成习惯和问题, ...

  5. redux-saga 异步流

    前言 React的作用View层次的前端框架,自然少不了很多中间件(Redux Middleware)做数据处理, 而redux-saga就是其中之一,目前这个中间件在网上的资料还是比较少,估计应用的 ...

  6. Android KK后为何工厂模式下无法adb 无法重新启动机器 ?

    前言          欢迎大家我分享和推荐好用的代码段~~ 声明          欢迎转载,但请保留文章原始出处:          CSDN:http://www.csdn.net        ...

  7. 【Mongodb教程 第一课 补加课1 】windows7 下安装mongodb 开启关闭服务

    mongodb在2.2版本开始就不支持windows xp了(我想现在用xp的应该也是带着情怀的一部分人吧,我只是一个工匠而已),windows下server8 R2,64位,32位,只是32位只支持 ...

  8. 【拆分版】Docker-compose构建Zookeeper集群管理Kafka集群

    写在前边 在搭建Logstash多节点之前,想到就算先搭好Logstash启动会因为日志无法连接到Kafka Brokers而无限重试,所以这里先构建下Zookeeper集群管理的Kafka集群. 众 ...

  9. 10.2.0.1.1 grid control的启动和关闭

    一.Stopping Grid Control and All Its Components 1.停止OMS服务 [oracle@ocm2 oms10g]$ cd /u01/app/oracle/Or ...

  10. VTMagic的使用

    // VTMagic的使用 //  CFOrderViewController.m //  qifuyuniOS //// /** *  @author 李洪强, 16-08-30 10:08:50 ...