中国剩余定理。

可以手动模拟一下每一次开始的人的编号和结束的人的编号。

每次删掉一个人,对剩下的人重新编号。

这样一次模拟下来,可以得到n个方程

形如:(u[i]+k)%(n-i+1)=v[i]

化简一下就是:k%(n-i+1)=v[i]-u[i]%(n-i+1)

接下来就是求解最小的k,满足所有式子

中国剩余定理板子一套就AC了......

#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std; typedef long long LL;
const int maxn = ;
int n, T;
int s[maxn], flag[maxn], tmp[maxn]; int u[], v[];
LL a[maxn], b[maxn]; void ls()
{
int cnt = ;
for (int i = ; i <= n; i++)
{
if (flag[i] == )
tmp[cnt++] = i;
}
} int Find(int a)
{
for (int i = a; i <= n; i++)
if (flag[i] == ) return i;
for (int i = ; i <= a; i++)
if (flag[i] == ) return i;
} int f2(int a)
{
for (int i = ;; i++)
if (tmp[i] == a) return i;
} void egcd(LL a, LL b, LL&d, LL&x, LL&y)
{
if (!b) { d = a, x = , y = ; }
else
{
egcd(b, a%b, d, y, x);
y -= x*(a / b);
}
} LL lmes() {
LL M = a[], R = b[], x, y, d;
for (int i = ; i <= n; i++) {
egcd(M, a[i], d, x, y);
if ((b[i] - R) % d) return -;
x = (b[i] - R) / d*x % (a[i] / d);
R += x*M;
M = M / d*a[i];
R %= M;
}
return (R + M) % M ? (R + M) % M : M;
} void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if (b == )
d = a, x = , y = ;
else
{
exgcd(b, a%b, d, y, x);
y -= x * (a / b);
}
} LL china(LL n, LL m[], LL a[])
{
LL aa = a[];
LL mm = m[];
for (int i = ; i<n; i++)
{
LL sub = (a[i] - aa);
LL d, x, y;
exgcd(mm, m[i], d, x, y);
if (sub % d) return -; LL new_m = m[i] / d;
new_m = (sub / d*x%new_m + new_m) % new_m;
aa = mm*new_m + aa;
mm = mm*m[i] / d;
}
aa = (aa + mm) % mm;
return aa ? aa : mm;
} int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
int ai; scanf("%d", &ai);
s[ai] = i;
}
memset(flag, , sizeof flag); u[] = , v[] = s[];
if (v[] == n) v[] = ; flag[s[]] = ; for (int i = ; i <= n; i++)
{
int st, en;
ls();
st = Find(s[i - ]), st = f2(st), st = st - ;
if (st == -) st = n - i;
en = f2(s[i]), u[i] = st;
v[i] = en; if (v[i] == n - i+) v[i] = ;
flag[s[i]] = ;
}
/*
for (int i = 1; i <= n; i++)
printf("%d %d\n", u[i], v[i]);
*/ //接下来就是求解最小的k,满足所有式子
//k%(n-i+1)=v[i]-u[i]%(n-i+1) for (int i = ; i <= n; i++)
{
a[i] = (LL)(n - i + );
b[i] = (LL)(v[i] - u[i] % (n - i + ));
}
LL k = china(n, a + , b + );
if (k == -) printf("Creation August is a SB!\n");
else printf("%lld\n", k);
}
return ;
}

HDU 5668 Circle的更多相关文章

  1. hdu 5668 Circle 中国剩余定理

    Circle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  2. BZOJ 2976: [Poi2002]出圈游戏 HDU 5668 CRT

    2976: [Poi2002]出圈游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2976 Description Input 中第一 ...

  3. hdu 5343 MZL's Circle Zhou SAM

    MZL's Circle Zhou 题意:给定两个长度不超过a,b(1 <= |a|,|b| <= 90000),x为a的连续子串,b为y的连续子串(x和y均可以是空串):问x+y形成的不 ...

  4. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

  5. HDU 1221 Rectangle and Circle(判断圆和矩形是不是相交)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1221 Rectangle and Circle Time Limit: 2000/1000 MS (J ...

  6. HDU 5343 MZL's Circle Zhou

    MZL's Circle Zhou Time Limit: 1000ms Memory Limit: 131072KB This problem will be judged on HDU. Orig ...

  7. HDU 4669 Mutiples on a circle 数位DP

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4669 考察对取模的的理解深不深刻啊,当然还有状态的设计····设d[i][j]表示以第i个数结尾,余 ...

  8. HDU 4669 Mutiples on a circle (2013多校7 1004题)

    Mutiples on a circle Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  9. HDU 5343 MZL's Circle Zhou 后缀自动机+DP

    MZL's Circle Zhou Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

随机推荐

  1. Codeforces GYM 100741A . Queries

    time limit per test 0.25 seconds memory limit per test 64 megabytes input standard input output stan ...

  2. ldap_modify: No such object (32) matched DN: cn=config

    centos 6.9 部署 kerbors ldap 报错 [root@hadoop data]# ldapmodify -Y EXTERNAL -H ldapi:/// -f chdomain.ld ...

  3. Android(java)学习笔记155:中文乱码的问题处理(qq登录案例)

    1. 我们在之前的笔记中LoginServlet.java中,我们Tomcat服务器回复给客户端的数据是英文的"Login Success","Login Failed& ...

  4. Linux-RedHat7.2 使用CentOS源

    -- 查看yum rpm -qa |grep yum --卸载yum rpm -qa | grep yum | xargs rpm -e --nodeps --拷贝centos系统yum工具安装程序到 ...

  5. (转)关于treap的板子理解

    关于treap的板子理解: 关于结构体的定义:(一般平衡树无法理解的变量名):v:节点的值:size:子节点的个数(包括自己):cnt:相同的值的副本数:l:左儿子:r:右儿子: 右旋:父亲变成左儿子 ...

  6. Microsoft Project 2010基础使用方法

    5.1 项目管理与Microsoft Project2010 Microsoft Project2010深受广大项目管理工程师的青睐. 5.1.1 项目管理的概念 项目管理是项目管理者在有限的资源约束 ...

  7. tree iview treeData json数据 添加 selected 数据 要进行vue.set 进行响应式添加

    tree iview treeData json数据 添加 selected 数据 要进行vue.set 进行响应式添加

  8. centOS7安装 mysql-community-release-el7-5.noarch.rpm 包

    一.rpm包 1.wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm(下载rpm) 2.rpm -ivh mysql ...

  9. Spring框架 aop操作的注解方法 基于aspectj的自动注解aop方法 抽取相同的value="execution(public void cn.itcast.f_aspect.CRUD.*())"

    首先是在xml配置文件中配置好对象,然后开启aop的注解方法——即<aop:aspectj-autoproxy></aop:aspectj-autoproxy> xml代码如下 ...

  10. Hibernate的持久化对象配置

    定义Pojo对象和**.hbm.xml文件 -1 对于每一个需要持久化的对象都需要创建一个Pojo类定义,Hibernate要求POJO类定义中必须有一个no-argument的构造方法,便于Hibe ...