BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数
题意:给定n求,有n个因子的最小正整数。
题解:水题,zcr都会,我就不说什么了。
因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子,
(1+p1)*(1+p2)*...=n,然后用小的质数填坑。
#include <bits/stdc++.h>
using namespace std; int pri[] = {,,,,,,,,,,,,,,,,};
int n, ans[], res[], tmp[];
double lg[], mn=DBL_MAX; void input()
{
scanf("%d", &n);
for(int i=; i<=; i++) lg[i] = log(pri[i]);
} void dfs(double x, int y, int z){//现在的数是e^x,还剩下y个因子,选到第z个质数
if(x >= mn) return;
if(y == ){
mn = x;
memset(res, , sizeof(res));
for(int i=; i<=z-;i++) res[i]=tmp[i];
return;
}
if(z>) return;
for(int i = ; (i+)*(i+)<=y; i++){
if(y%(i+)==)
{
if(i != ){
tmp[z] = i;
dfs(x+lg[z]*i, y/(i+), z+);
}
if((i+)*(i+)!=y){
tmp[z] = y/(i+)-;
dfs(x+lg[z]*(y/(i+)-), i+, z+);
}
}
}
} void work()
{
dfs(, n, );
} void output()
{
ans[]=ans[]=;
for(int i=;i<=;i++){
for(;res[i]>;res[i]--){
for(int j=;j<=ans[];j++) ans[j]*=pri[i];
for(int j=;j<=ans[];j++) ans[j+]+=ans[j]/, ans[j]%=;
if(ans[ans[]+]!=) ans[]++;
while(ans[ans[]]/!=){
ans[ans[]+] += ans[ans[]]/;
ans[ans[]] %= ;
++ans[];
}
}
}
for(int i = ans[]; i>=; i--){
printf("%d", ans[i]);
}
printf("\n");
} int main()
{
input();
work();
output();
return ;
}
BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数的更多相关文章
- BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )
15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...
- 【BZOJ】1225: [HNOI2001] 求正整数
http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...
- bzoj1225 [HNOI2001] 求正整数
1225: [HNOI2001] 求正整数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 762 Solved: 313[Submit][Statu ...
- 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数
// 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...
- luogu P1128 [HNOI2001]求正整数 dp 高精度
LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- [HNOI2001] 求正整数 - 背包dp,数论
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...
- P1128 [HNOI2001]求正整数
传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...
- 实验一:实现求正整数1-N之间所有质数的功能,并进行测试。
实验一 Java开发环境的熟悉(Linux + Eclipse) 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 命令行下的程序开 ...
随机推荐
- AJPFX解析Java关键字之assert
Java有许多关键字,但是这个关键字估计很少有人了解,今天就跟大家谈一谈这个关键字吧. 先说明一下,这个关键字开发中用的极少,感兴趣的朋友可以了解一下. 一.概述 在C和C++语言中都有assert关 ...
- js插件之Ocupload
使用方法: var myUpload = $(element).upload({ name: 'file', action: '', enctype: 'multipart/form-data', p ...
- 2556. [NOIP2016]玩具谜题
[题目描述] 小南有一套可爱的玩具小人,它们各有不同的职业.有一天,这些玩具小人把小南的眼镜藏了起来.小南发现玩具小人们围成了一个圈,它们有的面朝国内,有的面朝圈外.如下图: 这时singer告诉小南 ...
- Android 在代码中安装 APK 文件
废话不说,上代码 private void install(String filePath) { Log.i(TAG, "开始执行安装: " + filePath); File a ...
- applicationContext.getBean(“loginEntity”)
<!-- 指定Spring需要扫描的包,并将所有是别的类放到容器中,便于识别被注解的受托管bean --> <context:component-scan base-package= ...
- vue路由细节探讨
1.使用router-link 不会让页面刷新,使用a标签会使页面刷新.2.router-link 里面的to="/路由地址" tag=""自定义标签" ...
- chatops--rocketchat+hubot
chatops--rocketchat+hubot 原文地址:http://www.cnblogs.com/caoguo/p/7221956.html 先放几张图 # rocket.chat # hu ...
- Activiti数据库表结构(表详细版)
http://blog.csdn.net/hj7jay/article/details/51302829 1 Activiti数据库表结构 1.1 数据库表名说明 Activiti工作流总 ...
- codeforces_1075_C. The Tower is Going Home
http://codeforces.com/contest/1075/problem/C 题意:一个长宽均为1e9的棋盘,n个垂直障碍在x列无限长,m个水平障碍在第y行从第x1列到x2列.可以水平和垂 ...
- C# 获取文件编码
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...