题意:给定n求,有n个因子的最小正整数。

题解:水题,zcr都会,我就不说什么了。

  因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子,

  (1+p1)*(1+p2)*...=n,然后用小的质数填坑。

 #include <bits/stdc++.h>
using namespace std; int pri[] = {,,,,,,,,,,,,,,,,};
int n, ans[], res[], tmp[];
double lg[], mn=DBL_MAX; void input()
{
scanf("%d", &n);
for(int i=; i<=; i++) lg[i] = log(pri[i]);
} void dfs(double x, int y, int z){//现在的数是e^x,还剩下y个因子,选到第z个质数
if(x >= mn) return;
if(y == ){
mn = x;
memset(res, , sizeof(res));
for(int i=; i<=z-;i++) res[i]=tmp[i];
return;
}
if(z>) return;
for(int i = ; (i+)*(i+)<=y; i++){
if(y%(i+)==)
{
if(i != ){
tmp[z] = i;
dfs(x+lg[z]*i, y/(i+), z+);
}
if((i+)*(i+)!=y){
tmp[z] = y/(i+)-;
dfs(x+lg[z]*(y/(i+)-), i+, z+);
}
}
}
} void work()
{
dfs(, n, );
} void output()
{
ans[]=ans[]=;
for(int i=;i<=;i++){
for(;res[i]>;res[i]--){
for(int j=;j<=ans[];j++) ans[j]*=pri[i];
for(int j=;j<=ans[];j++) ans[j+]+=ans[j]/, ans[j]%=;
if(ans[ans[]+]!=) ans[]++;
while(ans[ans[]]/!=){
ans[ans[]+] += ans[ans[]]/;
ans[ans[]] %= ;
++ans[];
}
}
}
for(int i = ans[]; i>=; i--){
printf("%d", ans[i]);
}
printf("\n");
} int main()
{
input();
work();
output();
return ;
}

BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数的更多相关文章

  1. BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...

  2. 【BZOJ】1225: [HNOI2001] 求正整数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...

  3. bzoj1225 [HNOI2001] 求正整数

    1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Statu ...

  4. 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数

    // 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...

  5. luogu P1128 [HNOI2001]求正整数 dp 高精度

    LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...

  6. [HNOI2001]求正整数

    题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...

  7. [HNOI2001] 求正整数 - 背包dp,数论

    对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...

  8. P1128 [HNOI2001]求正整数

    传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...

  9. 实验一:实现求正整数1-N之间所有质数的功能,并进行测试。

    实验一 Java开发环境的熟悉(Linux + Eclipse) 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 命令行下的程序开 ...

随机推荐

  1. Android 线程池系列教程(4) 启动线程池中的线程和中止池中线程

    Running Code on a Thread Pool Thread 上一课   下一课 1.This lesson teaches you to Run a Runnable on a Thre ...

  2. Visual studio docker build no such file or directory

    在我构建新的镜像的时候, 发生 了  no such file or directory 的错误.  这个错误找了半天, 没头绪,项目结构是这样的: WebApplication1 建立在根目录下,是 ...

  3. 对dynamic和lambda的学习

    var, object, dynamic的区别以及使用 dynamic(2) – ExpandoObject的使用 .NET中的Lambda表达式与匿名方法

  4. Oracle中的表空间

    表空间是什么? Oracle数据库包含逻辑结构和物理结构. 数据库的物理结构是指构成数据库的一组操作系统文件. 数据库的逻辑结构是指描述数据组织方式的一组逻辑概念及它们之间的关系. 表空间是数据库数据 ...

  5. Effective Java读书笔记完结啦

    Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...

  6. js拿到焦点所在的标签对象

    通过 document.activeElement 此时是js对象,如果要调用jQuery的API那么就转换成jquery对象 $(document.activeElement)

  7. Rxlifecycle使用详解,解决RxJava内存泄露问题

    http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2015/1122/3711.html

  8. React全家桶之一 react-router之高级

    使用query获取URL中的参数 //引入相关的依赖 const Page = props => <div> <h1>{props.location.query.mess ...

  9. R in action读书笔记(20)第十五章 处理缺失数据的高级方法

    处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替( ...

  10. js中cookie的操作

    JavaScript中的另一个机制:cookie,则可以达到真正全局变量的要求. cookie是浏览器 提供的一种机制,它将document 对象的cookie属性提供给JavaScript.可以由J ...