注意是等于s不是大于s

dfs,用set或者map存这条链到root的点权和sum[u],更新答案的时候查一下有没有s-sum[u]即可

#include<iostream>
#include<cstdio>
#include<set>
using namespace std;
const int N=500005;
int n,m,a[N],h[N],cnt,s[N],ans;
set<int>st;
struct qwe
{
int ne,to;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs(int u,int fa)
{
s[u]=s[fa]+a[u];
st.insert(s[u]);
if(st.count(s[u]-m))
ans++;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
dfs(e[i].to,u);
st.erase(s[u]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
st.insert(0);
dfs(1,0);
printf("%d\n",ans);
return 0;
}

bzoj 2783: [JLOI2012]树【树上差分】的更多相关文章

  1. bzoj 2783: [JLOI2012]树

    Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深 ...

  2. [BZOJ 4771]七彩树(可持久化线段树+树上差分)

    [BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...

  3. 2783: [JLOI2012]树( dfs + BST )

    直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...

  4. BZOJ2588 主席树 + 树上差分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树 ...

  5. Codechef Sad Pairs——圆方树+虚树+树上差分

    SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...

  6. BZOJ4424/CF19E Fairy(dfs树+树上差分)

    即删除一条边使图中不存在奇环.如果本身就是个二分图当然任意一条边都可以,先check一下.否则肯定要删除在所有奇环的交上的边. 考虑怎么找这些边.跑一遍dfs造出dfs树,找出返祖边构成的奇环.可以通 ...

  7. BZOJ3331 压力 (圆方树+树上差分)

    题意 略 题解 求路径上的割点. 然后就直接圆方树上差分 CODE #include <bits/stdc++.h> using namespace std; inline void rd ...

  8. BZOJ3331 [BeiJing2013]压力[圆方树+树上差分]

    圆方树新技能get.具体笔记见图连通性问题学习笔记. 这题求无向图的必经点,这个是一个固定套路:首先,一张连通的无向图中,每对点双和点双之间是以一个且仅一个割点连接起来的(如果超过一个就不能是割点了) ...

  9. P2664 树上颜色统计 点分治 虚树 树上差分 树上莫队

    树上差分O(n)的做法 考虑每种颜色对每个点的贡献,如果对于每种颜色我们把当前颜色的点删除,那么原来的树就会分成几个子树,对于一个点,当前颜色在和他同子树的点的点对路径上是不会出现的.考虑到有多种颜色 ...

随机推荐

  1. Last Defence - UVA7045

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  2. P3366 最小生成树【模板】 洛谷

    https://www.luogu.org/problem/show?pid=3366 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包 ...

  3. CodeForces 570D 【dfs序】

    题意: 给一颗树,根节点深度为1,每一个节点都代表一个子母. 数据输入: 节点数 询问数 从编号为2的节点开始依次输入其父节点的编号(共有节点数减1个数字输入) 字符串有节点数个小写字母 接下来询问 ...

  4. redis连接数据库进行操作

    该项目需要的类目录 1.首先我们需要创建我们的实体类 2.放置我们的dao层,在里面写入方法 3.配置类Appconfig需要加入我们的JdbcTemplate方法,因为我们用的是spring,所以需 ...

  5. java基础 4 继承(1)访问权限与作用域

    作用域与可见性 当前类 同一package 子类 其他package public √ √ √ √ protected √ √ √   defalut √ √     private √      

  6. Java描述符(修饰符)的类型

    以下内容引用自http://wiki.jikexueyuan.com/project/java/modifier-types.html: 描述符(修饰符)是添加到那些定义中来改变他们的意思的关键词.J ...

  7. [React] {svg, css module, sass} support in Create React App 2.0

    create-react-app version 2.0 added a lot of new features. One of the new features is added the svgr  ...

  8. 巧用Drawable 实现Android UI 元素间距效果

    源文地址: 巧用Drawable 实现Android UI 元素间距效果 在大部分的移动UI或者Web UI都是基于网格概念而设计的.这种网格一般都是有一些对其的方块组成,然后它们组合成为一个块.使用 ...

  9. Office WORD WPS如何取消拼写检查

    1 审阅-修订-修订选项-拼写,全部取消勾选.

  10. 从PRISM开始学WPF(一)WPF?

    从PRISM开始学WPF(一)WPF?   我最近打算学习WPF ,在寻找MVVM框架的时候发现了PRISM,在此之前还从一些博客上了解了其他的MVVM框架,比如浅谈WPF中的MVVM框架--MVVM ...