UVA10600 ACM Contest and Blackout —— 次小生成树
题目链接:https://vjudge.net/problem/UVA-10600
In order to prepare the “The First National ACM School Contest” (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well. You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major — find the cost of the two cheapest connection plans.
Input
The Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3 < N < 100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai , Bi , Ci , where Ci is the cost of the connection (1 < Ci < 300) between schools Ai and Bi . The schools are numbered with integers in the range 1 to N.
Output
For every test case print only one line of output. This line should contain two numbers separated by a single space – the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1 = S2 if and only if there are two cheapest plans, otherwise S1 < S2. You can assume that it is always possible to find the costs S1 and S2. Sample Input 2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 Sample Output 110 121 37 37
题解:
赤裸裸的求最小生成树和次小生成树。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e2+; int cost[MAXN][MAXN], lowc[MAXN], pre[MAXN], Max[MAXN][MAXN];
bool vis[MAXN], used[MAXN][MAXN]; int Prim(int st, int n)
{
int ret = ;
memset(vis, false, sizeof(vis));
memset(used, false, sizeof(used));
memset(Max, , sizeof(Max)); for(int i = ; i<=n; i++)
lowc[i] = (i==st)?:INF;
pre[st] = st; for(int i = ; i<=n; i++)
{
int k, minn = INF;
for(int j = ; j<=n; j++)
if(!vis[j] && minn>lowc[j])
minn = lowc[k=j]; vis[k] = true;
ret += minn;
used[pre[k]][k] = used[k][pre[k]] = true; //pre[k]-k的边加入生成树
for(int j = ; j<=n; j++)
{
if(vis[j] && j!=k) //如果遇到已经加入生成树的点,则找到两点间路径上的最大权值。
Max[j][k] = Max[k][j] = max(Max[j][pre[k]], lowc[k]); //k的上一个点是pre[k]
if(!vis[j] && lowc[j]>cost[k][j]) //否则,进行松弛操作
{
lowc[j] = cost[k][j];
pre[j] = k;
}
}
}
return (ret==INF)?-:ret;
} int SMST(int t1 ,int n)
{
int ret = INF;
for(int i = ; i<=n; i++) //用生成树之外的一条边去代替生成树内的一条边
for(int j = i+; j<=n; j++)
{
if(cost[i][j]!=INF && !used[i][j]) //去掉了i-j路径上的某条边,但又把i、j直接连上,所以还是一棵生成树。
ret = min(ret, t1+cost[i][j]-Max[i][j]);
}
return ret;
} int main()
{
int T, n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
cost[i][j] = (i==j)?:INF; for(int i = ; i<=m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
cost[u][v] = cost[v][u] = w;
} int t1 = Prim(, n);
int t2 = SMST(t1, n);
printf("%d %d\n", t1, t2);
}
}
UVA10600 ACM Contest and Blackout —— 次小生成树的更多相关文章
- UVA 10600 ACM Contest and Blackout 次小生成树
又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...
- UVA10600:ACM Contest and Blackout(次小生成树)
ACM Contest and Blackout 题目链接:https://vjudge.net/problem/UVA-10600 Description: In order to prepare ...
- UVA-10600 ACM Contest and Blackout (次小生成树)
题目大意:给一张无向图,找出最小生成树和次小生成树. 题目分析:模板题...方法就是枚举所有的比最小生成树中两端点之间的最长边还要长的边,用它替换,再取一个最小的值便是次小生成树了. 代码如下: # ...
- UVA10600 ACM Contest and Blackout
用prim算法求最小生成树和次小生成树~ #include<cstdio> #include<algorithm> #include<cstring> using ...
- 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)
[题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...
- [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树
题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...
- 【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)
题意:有T组数据,N个点,M条边,每条边有一定的花费.问最小生成树和次小生成树的权值. 解法:具体请见 关于生成树的拓展 {附[转]最小瓶颈路与次小生成树}(图论--生成树) 1 #include&l ...
- uva 10600 ACM Contest And Blackout
题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
随机推荐
- CentOS 7中设置PHP7的Log文件日志
对于服务器上面运行的php代码, 想要去查看对应的log,找到代码无法运行的原因 1.通过:phpinfo()去找 error_log 结果得到: 2.然后去编辑php.ini,修改三处地方 vi / ...
- Android Ubuntu 12.04 源码环境搭建
$ sudo apt-get install git gnupg flex bison gperf build-essential \ zip curl libc6-dev libncurses5-d ...
- MyBatis 3 学习
MyBatis是一款优秀的持久化框架,支持定制化SQL.存储过程以及高级映射.MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获得结果集.MyBatis可以使用简单的XML或注解来配置和映 ...
- jQuery中attr和prop方法的区别
jQuery中attr和prop方法的区别。 http://my.oschina.net/bosscheng/blog/125833 http://www.javascript100.com/?p=8 ...
- Javascript拼接HTML字符串的方法列举及思路
转载过来,去掉一些废话吧. 目标: 方便的拼接字符串,不使用让人眼晕的+=.使用过程如下: 1,先创建一个作为“模板”的字符串,如:’My name is ${name},I\’m ${age}.’ ...
- Extjs中获取grid数据
(1)grid.getStore().getRange(0,store.getCount()); //得到grid所有的行 (2)grid.getSelectionModel().getSelecti ...
- Linux内核设计与实现——读书笔记1:内核简介
内核:有的时候被称管理者或者操作系统核心,通常内核负责响应中断的中断服务程序, 负责管理多个进程从而分享处理器时间的调度程序,负责管理进程地址空间德内存管理程序 和网络,进程间通信等系统服务程序共同组 ...
- poj -1185 炮兵阵地 (经典状压dp)
http://poj.org/problem?id=1185 参考博客:http://poj.org/problem?id=1185 大神博客已经讲的很清楚了,注意存状态的时候是从1开始的,所以初始化 ...
- [Bzoj1767][Ceoi2009]harbingers (树上斜率优化)
1767: [Ceoi2009]harbingers Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 451 Solved: 120[Submit][S ...
- otl_stream流相关绑定变量
声明绑定变量 本章节将详细的说明如何在otl_stream流里面声明绑定变量. SQL语句.SQL语句块或存储过程在程序里面使用的时候总是带有占位符.OTL里面带有一个小的解析器用来解析这些占位符,并 ...