奇异值分解 SVD 的数学解释
奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法。除此之外,矩阵分解还有很多方法,例如特征分解(Eigendecomposition)、LU分解(LU decomposition)、QR分解(QR decomposition)和极分解(Polar decomposition)等。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。
相关概念
参考自维基百科。
正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0
正定矩阵:如果对于所有的非零实系数向量 zz,都有 zTAz>0zTAz>0,则称矩阵 AA 是正定的。正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0。相对应的,半正定矩阵的行列式必然 ≥ 0。
定义
下面引用 SVD 在维基百科中的定义。
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition of a positive semidefinite normal matrix (for example, a symmetric matrix with positive eigenvalues) to any m×nm×n matrix via an extension of polar decomposition.
也就是说 SVD 是线代中对于实数矩阵和复数矩阵的分解,将特征分解从 半正定矩阵 推广到任意 m×nm×n 矩阵。
注意:本篇文章内如未作说明矩阵均指实数矩阵。
假设有 m×nm×n 的矩阵 AA ,那么 SVD 就是要找到如下式的这么一个分解,将 AA 分解为 3 个矩阵的乘积:
Am×n=Um×mΣm×nVTn×n
Am×n=Um×mΣm×nVn×nT
其中,UU 和 VV 都是正交矩阵 (Orthogonal Matrix),在复数域内的话就是酉矩阵(Unitary Matrix),即
UTU=Em×m
UTU=Em×m
VTV=En×n
VTV=En×n
换句话说,就是说 UU 的转置等于 UU 的逆,VV 的转置等于 VV 的逆:
UT=U−1
UT=U−1
VT=V−1
VT=V−1
而 ΣΣ 就是一个非负实对角矩阵。
那么 UU 和 VV 以及 ΣΣ 是如何构成的呢?
求解
UU 和 VV 的列分别叫做 AA 的 左奇异向量(left-singular vectors)和 右奇异向量(right-singular vectors),ΣΣ 的对角线上的值叫做 AA 的奇异值(singular values)。
其实整个求解 SVD 的过程就是求解这 3 个矩阵的过程,而求解这 3 个矩阵的过程就是求解特征值和特征向量的过程,问题就在于 求谁的特征值和特征向量。
UU 的列由 AATAAT 的单位化过的特征向量构成
VV 的列由 ATAATA 的单位化过的特征向量构成
ΣΣ 的对角元素来源于 AATAAT 或 ATAATA 的特征值的平方根,并且是按从大到小的顺序排列的
知道了这些,那么求解 SVD 的步骤就显而易见了:
求 AATAAT 的特征值和特征向量,用单位化的特征向量构成 UU
求 ATAATA 的特征值和特征向量,用单位化的特征向量构成 VV
将 AATAAT 或者 ATAATA 的特征值求平方根,然后构成 ΣΣ
举例
假设
A=⎛⎝⎜⎜⎜21004300⎞⎠⎟⎟⎟
A=(24130000)
那么可以计算得到
AAT=⎛⎝⎜⎜⎜20140014100000000000⎞⎠⎟⎟⎟
AAT=(20140014100000000000)
接下来就是求这个矩阵的特征值和特征向量了
AATx=λx
AATx=λx
(AAT−λE)x=0
(AAT−λE)x=0
要想该方程组有非零解(即非零特征值),那么系数矩阵 AAT−λEAAT−λE 的行列式必须为 0
∣∣∣∣∣∣20−λ14001410−λ0000−λ0000−λ∣∣∣∣∣∣=0
|20−λ14001410−λ0000−λ0000−λ|=0
求解这个行列式我就不再赘述了,这个直接使用行列式展开定理就可以了,可以得到 λ1≈29.86606875,λ2≈0.13393125,λ3=λ4=0λ1≈29.86606875,λ2≈0.13393125,λ3=λ4=0,有 4 个特征值,因为特征多项式 |AAT−λE||AAT−λE| 是一个 4 次多项式。对应的单位化过的特征向量为
⎛⎝⎜⎜⎜0.817415560.5760484400−0.576048440.817415560000100001⎞⎠⎟⎟⎟
(0.81741556−0.57604844000.576048440.817415560000100001)
这就是矩阵 UU 了。
同样的过程求解 ATAATA 的特征值和特征向量,求得 λ1≈0.13393125,λ2≈29.86606875λ1≈0.13393125,λ2≈29.86606875,将特征值降序排列后对应的单位化过的特征向量为
(0.404553580.9145143−0.91451430.40455358)
(0.40455358−0.91451430.91451430.40455358)
这就是矩阵 VV 了。
而矩阵 ΣΣ 根据上面说的为特征值的平方根构成的对角矩阵
⎛⎝⎜⎜⎜5.464985700000.3659661900⎞⎠⎟⎟⎟
(5.4649857000.365966190000)
到此,SVD 分解就结束了,原来的矩阵 AA 就被分解成了 3 个矩阵的乘积。
A4×2=U4×4Σ4×2VT2×2
A4×2=U4×4Σ4×2V2×2T
⎛⎝⎜⎜⎜21004300⎞⎠⎟⎟⎟=⎛⎝⎜⎜⎜0.817415560.5760484400−0.576048440.817415560000100001⎞⎠⎟⎟⎟⎛⎝⎜⎜⎜5.464985700000.3659661900⎞⎠⎟⎟⎟(0.404553580.9145143−0.91451430.40455358)T
(24130000)=(0.81741556−0.57604844000.576048440.817415560000100001)(5.4649857000.365966190000)(0.40455358−0.91451430.91451430.40455358)T
Numpy 实现
Python 中可以使用 numpy 包的 linalg.svd() 来求解 SVD。
import numpy as np
A = np.array([[2, 4], [1, 3], [0, 0], [0, 0]])
print(np.linalg.svd(A))
1
2
3
4
输出
(array([[-0.81741556, -0.57604844, 0. , 0. ],
[-0.57604844, 0.81741556, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]),
array([ 5.4649857 , 0.36596619]),
array([[-0.40455358, -0.9145143 ],
[-0.9145143 , 0.40455358]]))
1
2
3
4
5
6
7
END
---------------------
作者:secondsilverman
来源:CSDN
原文:https://blog.csdn.net/u010099080/article/details/68060274
版权声明:本文为博主原创文章,转载请附上博文链接!
奇异值分解 SVD 的数学解释的更多相关文章
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD) --- 几何意义 (转载)
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
随机推荐
- 【184】FileZilla 搭建 FTP 及访问
参考:FileZilla 下载中心 参考:使用FileZilla Server轻松搭建个人FTP服务器 建好后,Windows 访问:Windows徽标键+R打开运行窗口,输入ftp://*** ,* ...
- 设计模式之观察者模式(Observer pattern)
最近参加了一次面试,其中笔试题有一道编程题,在更换掉试题的描述场景后,大意如下: 上课铃声响起,学生A/B/C/D进入教室:下课铃声响起,学生A/B/C/D离开教室. 要求使用设计模式的思想完成铃与学 ...
- python中lambda函数的笔记
学习网址为:https://foofish.net/lambda.html 通过lambda来定义一个匿名的函数,该匿名函数冒号前面的为函数传入值,冒号后面跟着的就是函数表达式. 例: lambda ...
- PCB Polar SI9000阻抗模型图片文字识别方法
用过Polar SI9000的都知道,阻抗模型图片可以进行用户鼠标交互,那么它的是如何实现的呢,下面就讲一下如何实现此功能的方法 一.看看Polar SI9000阻抗模型图片交互效果 鼠标点击阻抗 ...
- NOIp 2014 联合权值 By cellur925
题目传送门 这题自己(真正)思考了很久(欣慰). (轻而易举)地发现这是一棵树后,打算从Dfs序中下功夫,推敲了很久规律,没看出来(太弱了). 开始手动枚举距离为2的情况,模模糊糊有了一些概念,但没有 ...
- Canvas 入门案例
五. Canvas 入门案例 1. canvas 圆形绘制 <!DOCTYPE html> <html lang="en"> <head> ...
- 3-2 -------WERTYU------题挺水的
//题目的意思就是-----键盘上面你输入一个字符,就要输出该字符左边的字符. //空格和回车原样输出. #include<stdio.h> int main() { char a[]={ ...
- hdu 4565 So Easy! (共轭构造+矩阵快速幂)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...
- [USACO 2011 Nov Gold] Cow Steeplechase【二分图】
传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...
- 171 Excel Sheet Column Number Excel表列序号 26进制转10进制
给定一个Excel表格中的列名称,返回其相应的列序号.示例: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -&g ...