题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257

题目所求为$$Ans=\sum_{i=1}^nk%i$$

将其简单变形一下$$Ans=\sum_{i=1}^nk-\lfloor\frac{k}{i}\rfloor*i$$

$$Ans=n*k-\sum_{i=1}^{min(n,k)}\lfloor\frac{k}{i}\rfloor*i$$

容易知道$\frac{k}{i}$一共有$\sqrt{k}$种取值,可以利用分块技巧。然后$\frac{k}{i}$的值相同的这一段区间内,$i$是一个等差数列,可以用等差数列求和$O(1)$计算整个区间的值。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int N,K;
int main(){
scanf("%d%d",&N,&K);
ll ans=(ll)N*K,la,M=min(N,K);
for(int i=;i<=M;i=la+){
la=min(N,K/(K/i));
ans-=((la+i)*(la-i+)>>)*(K/i);
}
printf("%lld\n",ans);
return ;
}

[BZOJ1257][CQOI2007]余数之和sum 数学+分块的更多相关文章

  1. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

  2. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  3. BZOJ1257 CQOI2007 余数之和 【数分块】

    BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...

  4. BZOJ1257 [CQOI2007]余数之和sum

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj1257: [CQOI2007]余数之和sum(数论)

    非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k) ...

  6. BZOJ 1257 [CQOI2007]余数之和sum(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1257 [题目大意] 给出正整数n和k,计算j(n,k)=k mod 1 + k mod ...

  7. 【bzoj1257】[CQOI2007]余数之和sum

    [bzoj1257][CQOI2007]余数之和sum 2014年9月1日1,9161 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod ...

  8. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  9. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

随机推荐

  1. 鸡肋的JdbcRDD

          今天准备将mysql的数据倒腾到RDD.非常早曾经就知道有一个JdbcRDD.就想着使用一下,结果发现却是鸡肋一个.       首先,看看JdbcRDD的定义: * An RDD tha ...

  2. 刚刚做了个文件上传功能,拿来分享一下!(MVC架构及传统架构通用)

    文件上传无论在软件还是在网站上都十分常见,我今天再把它拿出来,讲一下,主要讲一下它的设计思想和实现技术,为了它的通用性,我把它做在了WEB.Service项目里,即它是针对服务器的,它的结构是关联UI ...

  3. SSH三大框架整合配置详细步骤(2)

    4 配置Hibernate Hibernate MySql连接配置 在Hibernate中,可以配置很多种数据库,例如MySql.Sql Server和Oracle,Hibernate MySql连接 ...

  4. bzoj2101【Usaco2010 Dec】Treasure Chest 藏宝箱

    2101: [Usaco2010 Dec]Treasure Chest 藏宝箱 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 418  Solved: ...

  5. js常用操作事件

    触发描述 方法 用法 点击 onclick="method();"   变换 onchange="testChange();"   双击 ondblclick= ...

  6. 通过minicom传送文件的相关配置及使用方法

    写一下我使用串口向开发板传送文件中遇到的问题及解决办法: 使用的软硬件环境: 虚拟机:VMware® Workstation 8.0.1 Linux操作系统:Fedora 9 开发板:mini6410 ...

  7. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  8. 洛谷P1505 [国家集训队]旅游(树剖+线段树)

    传送门 这该死的码农题…… 把每一条边变为它连接的两个点中深度较浅的那一个,然后就是一堆单点修改/路径查询,不讲了 这里就讲一下怎么搞路径取反,只要打一个标记就好了,然后把区间和取反,最大最小值交换然 ...

  9. XML(php中获取xml文件的方式/ajax获取xml格式的响应数据的方式)

    1.XML 格式规范: ① 必须有一个根元素 ② 不可有空格.不可以数字或.开头.大小写敏感 ③ 不可交叉嵌套 ④ 属性双引号(浏览器自动修正成双引号了) ⑤ 特殊符号要使用实体 ⑥ 注释和HTML一 ...

  10. 一条SQL语句是如何执行的?--Mysql45讲笔记记录 打卡day1

    写在前面的话:回想以前上班的时候,空闲时间还是挺多的,但是都荒废了.如今找工作着实费劲了.但是这段时间在极客时间买了mysql45讲,就好像发现了新大陆一样,这是我认真做笔记的第一天,说实话第一讲我已 ...