题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。现在,C君希望你告诉他队伍整齐时能看到的学生人数。

输入输出格式

输入格式:

共一个数N

输出格式:

共一个数,即C君应看到的学生人数。

输入输出样例

输入样例#1:

4
输出样例#1:

9

说明

【数据规模和约定】

对于 100% 的数据,1 ≤ N ≤ 40000

代码

#include<bits/stdc++.h>
using namespace std;
int ola(int n)
{
int ans=,i,k;
if(n==)
ans=;
else
{
ans=n;
k=;
for(i=;n!=;i+=k)
{
if(n%i==)
{
ans/=i;
ans*=(i-);
while(n%i==) n/=i;
i=k;
}
}
}
return ans;
}
int ans,n;
int main()
{
scanf("%d",&n);
if(n==) {cout<<<<endl;return ;}
for(int i=;i<=n;++i)
ans+=ola(i-);
cout<<ans+<<endl;
return ;
}

[SDOI2008]仪仗队 (欧拉函数)的更多相关文章

  1. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  2. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  3. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  6. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  7. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  8. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  9. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

随机推荐

  1. 安装AAA服务器遇到的问题

    安装升级AAA服务器的操作思路: 第一种:在原始服务器下更新升级安装包,实现升级: 第二种:重新安装最新版本的IOS,实现版本更新: 第一种方案更新AAS服务器ios 步骤1:copy软件更新包到li ...

  2. MySQL索引使用等

  3. URAL 1519 Formula 1 (插头DP,常规)

    题意:给一个n*m的矩阵,格子中是'*'则是障碍格子,不允许进入,其他格子都是必走的格子,所走格子形成一条哈密顿回路,问有多少种走法? 思路: 本来是很基础的题,顿时不知道进入了哪个坑.这篇插头DP的 ...

  4. Eclipse Java类编辑器里出现乱码的解决方案

    如图:在Java Class编辑器里出现的这种乱码,非常烦人. 解决方案:Windows->Preference->General->Appearance, 在里面将Theme设置成 ...

  5. SVN中的check out与export的区别

    http://blog.csdn.net/zndxlxm/article/details/7763116 check out跟check in对应,export跟import对应. check out ...

  6. sort函数的使用

    此篇当作自己的笔记(水平太菜,这都一直没搞明白) sort()函数的用法1)sort函数包含在头文件<algroithm>中,还要结合using namespace std2)sort有三 ...

  7. for循环输出i为同一值的问题

    使用闭包将变量i的值保护起来. //sava1:加一层闭包,i以函数参数形式传递给内层函数 for( var i=0; i<ps.length; i++ ) { (function(arg){ ...

  8. SniperOJ-leak-x86-64

    参考:1.借助DynELF实现无libc的漏洞利用小结 2.一步一步学ROP之linux_x64篇 - 蒸米 题目源码 #include <stdio.h> #include <un ...

  9. HTTP协议重定向

    HTTP重定向:服务器无法处理浏览器发送过来的请求(request),服务器告诉浏览器跳转到可以处理请求的url上.(浏览器会自动访问该URL地址,以至于用户无法分辨是否重定向了.) 重定向的返回码3 ...

  10. 使用xib开发界面

    使用xib开发界面 2015-02-02 10:03 编辑: suiling 分类:iOS开发 来源:jymn_chen‘s blog   纯代码写界面有时候会降低开发效率,对于一些通用简单的界面,例 ...