Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

【题目大意】

给出一个有向图,问求一个回路,使得回路上的点权之和/边权之和 最大。

【解题思路】

此题是对01分数规划的应用,那么首先明白01分数规划的思想,用基础分数规划,就是第三类,最优比率环裸题

spfa判正环。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#define N 1007
#define M 5007
using namespace std; int n,m;
int num[N];double w[N],dis[N];bool vis[N];
int cnt,head[N],Next[M],rea[M];double val[M]; void Add(int u,int v,double fee)
{Next[++cnt]=head[u],head[u]=cnt,rea[cnt]=v,val[cnt]=fee;}
bool spfa(double rate)
{
for (int i=;i<=n;i++)
dis[i]=,vis[i]=,num[i]=;
queue<int>q;
for (int i=;i<=n;i++)
q.push(i);
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];double fee=w[u]-rate*val[i];
if (dis[u]+fee>dis[v])
{
dis[v]=dis[u]+fee;
if (!vis[v])
{
q.push(v);
num[v]++;vis[v]=;
if (num[v]>n) return true;
}
}
}
vis[u]=;
}
return false;
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
scanf("%lf",&w[i]);
int x,y;double z;
for (int i=;i<=m;i++)
{
scanf("%d%d%lf",&x,&y,&z);
Add(x,y,z);
}
double l=0.0,r=1000.0;
while (r-l>0.0001)
{
double mid=(l+r)/;
if (spfa(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",l);
}

POJ过不了

OpenJ_Bailian3375的更多相关文章

随机推荐

  1. 你不知道的HTTP之HTTPS

    确保web安全的HTTPS HTTPS=HTTP+ 加密 + 认证 + 完整性保护 1.加密: 1)通信的加密 所谓互联网,是由能连通到全世界的网络组成的.无论世界哪个角 落的服务器在和客户端通信时, ...

  2. 关于自动化测试环境的集成(Jenkins+RobotFramework+TestLink+SVN)

    本人主要从事网络安全产品的测试,由于一些产品功能在后期稳定后每个版本的迭代仍需要投入大量的时间和精力去测试,所以近期计划逐步的去了解自动化测试的一些内容来节省和解放一些资源.由于自己并没有什么编码基础 ...

  3. OpenGL 渲染上下文-context

    context理解 OpenGL在渲染的时候需要一个Context,这个Context记录了OpenGL渲染需要的所有信息,可以把它理解成一个大的结构体,它里面记录了当前绘制使用的颜色.是否有光照计算 ...

  4. 四、绘图可视化之Seaborn

    Seaborn-Powerful Matplotlib Extension seaborn实现直方图和密度图 import numpy as np import pandas as pd import ...

  5. jExcelAPI导入导出excel

      MS的电子表格(Excel)是Office的重要成员,是保存统计数据的一种常用格式.作为办公文档,势必要涉及到的电子文档的交换,Excel是一种在企业中非常通用的文件格式,打印和管理也比较方便.在 ...

  6. XCode和Cocoa在开发中使用第三方dylib示例

    XCode和Cocoa在开发中使用第三方dylib示例 www.educity.cn   发布者:yukowang   来源:网络转载   发布日期:2014年06月13日      XCode和Co ...

  7. ExtJs如何使用自定义插件动态保存表头配置(隐藏或显示)

    关于保存列表表头的配置,一般我们不需要与后台交互,直接保存在 localStorage 中就能满足常规使用需求(需要浏览器支持). 直接上代码,插件: Ext.define('ux.plugin.Co ...

  8. MacBook Pro休眠掉电、耗电量大问题解决方案

    1.前言 最近我的2015mbpMacBook Pro (Retina, 13-inch, early 2015)更新完10.14系统后,发现休眠待机一晚上后能掉5%电,白天待机4-5小时又掉了8%. ...

  9. Shell脚本中循环语句for,while,until用法

    循环语句: Bash Shell中主要提供了三种循环方式:for.while和until. 一.for循环 for循环的运作方式,是讲串行的元素意义取出,依序放入指定的变量中,然后重复执行含括的命令区 ...

  10. 关于priority_queue的一些说明

    参考GGBeng 相关定义 优先队列容器与队列一样,只能从队尾插入元素,从队首删除元素.但是它有一个特性,就是队列中最大的元素总是位于队首,所以出队时,并非按照先进先出的原则进行,而是将当前队列中最大 ...