矩阵乘法递推的新姿势。

叉姐论文里有讲到

利用特征多项式进行递推,然后可以做到k^2logn

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define p 1000000007
ll c[4010];
int n,k,u[2010],ans,x,cnt;
struct P{int s[2010];}f,t;
void mult(P & a,const P & b)
{
F(i,0,k+k-2) c[i]=0;
F(i,0,k-1) F(j,0,k-1)
{
c[i+j]+=1LL*a.s[i]*b.s[j];
if (c[i+j]>=1LL<<62) c[i+j]%=p;
}
D(i,k+k-1,0) if (c[i]%=p,i>=k)
{
F(j,0,k-1)
{
c[i-1-j]+=c[i]*u[j];
if (c[i-1-j]>=1LL<<62) c[i-1-j]%=p;
}
c[i]=0;
}
F(i,0,k-1) a.s[i]=c[i];
}
int main()
{
scanf("%d%d",&n,&k);
F(i,0,k-1)
{
scanf("%d",&u[i]);
u[i]=(u[i]%p+p)%p;
}
for (t.s[1]=f.s[0]=1;n;n>>=1,mult(t,t)) if (n&1) mult(f,t);
F(i,0,k-1)
{
scanf("%d",&x);
x=(x%p+p)%p;
ans=(ans+1LL*x*f.s[i])%p;
}
printf("%d\n",ans);
}

  

  

BZOJ 4161 Shlw loves matrixI ——特征多项式的更多相关文章

  1. bzoj 4161 Shlw loves matrixI——常系数线性齐次递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...

  2. bzoj 4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...

  3. bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】

    并不会递推,不过板子挺好背的,只要是类似的递推都能用,但是注意c数组不能使负数 如果除了递推还有常数项的话,就用f[i]-f[i-1]的方式消掉常数项(然后多一个f[i-1]的项) #include& ...

  4. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  5. [BZOJ]4162: shlw loves matrix II

    Time Limit: 30 Sec  Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...

  6. 【BZOJ4161】Shlw loves matrixI

    题目描述 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 h(n),并将 ...

  7. bzoj4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...

  8. BZOJ 3563 DZY Loves Chinese

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  9. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

随机推荐

  1. win10下vs2013为程序集新建强名称文件时“未能完成操作。拒绝访问”的解决方案

    昨日,在使用vs2013开发开发一个小工具,打算给这个小工具的源代码进行保护. 在输入完成建立强名称密钥文件时,爆出了如下错误: 一开始以为是项目所在路径的权限问题,于是给项目所在路径文件夹添加了“U ...

  2. 2017“编程之美”终章:AI之战勇者为王

    编者按:8月15日,第六届微软“编程之美”挑战赛在选手的火热比拼中圆满落下帷幕.“编程之美”挑战赛是由微软主办,面向高校学生开展的大型编程比赛.自2012年起,微软每年都在革新比赛命题.紧跟时代潮流, ...

  3. GP SQL 优化

    1.收集统计信息vacuum full analyze ZCXT.ZCOT_PS_PROJECT; 2.检查表的数据量分布select gp_segment_id,count(*) from fact ...

  4. vijos 1448 校门外的树 (不是05年普及组那题)

    描述 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的……如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现有两个操作:K=1,K=1,读入l.r表 ...

  5. 关于自动化测试环境的集成(Jenkins+RobotFramework+TestLink+SVN)

    本人主要从事网络安全产品的测试,由于一些产品功能在后期稳定后每个版本的迭代仍需要投入大量的时间和精力去测试,所以近期计划逐步的去了解自动化测试的一些内容来节省和解放一些资源.由于自己并没有什么编码基础 ...

  6. codeforce Gym 100203I I WIN (网络流)

    把'I'拆成容量为1一条边,一个入点一个出点,入点和相邻的'W'连一条容量为1的边,出点和相邻的'N'连一条容量为1,所有的'W'和源点连一条容量为1边,所有的'N'和汇点连一条容量为1的边,表示只能 ...

  7. softmax_loss的归一化问题

    cnn网络中,网络更新一次参数是根据loss反向传播来,这个loss是一个batch_size的图像前向传播得到的loss和除以batch_size大小得到的平均loss. softmax_loss前 ...

  8. C#获得DataTable的key值

    //获得dataTable的key值 List<string> keyList = new List<string>(); ; i < dt.Columns.Count; ...

  9. 使用Spring AOP实现业务依赖解耦

    Spring IOC用于解决对象依赖之间的解耦,而Spring AOP则用于解决业务依赖之间的解耦: 统一在一个地方定义[通用功能],通过声明的方式定义这些通用的功能以何种[方式][织入]到某些[特定 ...

  10. 【数学 裴蜀定理】bzoj2257: [Jsoi2009]瓶子和燃料

    使gcd最大的trick Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N ...