E. Arthur and Brackets
time limit per test

2 seconds

memory limit per test

128 megabytes

input

standard input

output

standard output

Notice that the memory limit is non-standard.

Recently Arthur and Sasha have studied correct bracket sequences. Arthur understood this topic perfectly and become so amazed about correct bracket sequences, so he even got himself a favorite correct bracket sequence of length 2n. Unlike Arthur, Sasha understood the topic very badly, and broke Arthur's favorite correct bracket sequence just to spite him.

All Arthur remembers about his favorite sequence is for each opening parenthesis ('(') the approximate distance to the corresponding closing one (')'). For the i-th opening bracket he remembers the segment [li, ri], containing the distance to the corresponding closing bracket.

Formally speaking, for the i-th opening bracket (in order from left to right) we know that the difference of its position and the position of the corresponding closing bracket belongs to the segment [li, ri].

Help Arthur restore his favorite correct bracket sequence!

Input

The first line contains integer n (1 ≤ n ≤ 600), the number of opening brackets in Arthur's favorite correct bracket sequence.

Next n lines contain numbers li and ri (1 ≤ li ≤ ri < 2n), representing the segment where lies the distance from the i-th opening bracket and the corresponding closing one.

The descriptions of the segments are given in the order in which the opening brackets occur in Arthur's favorite sequence if we list them from left to right.

Output

If it is possible to restore the correct bracket sequence by the given data, print any possible choice.

If Arthur got something wrong, and there are no sequences corresponding to the given information, print a single line "IMPOSSIBLE" (without the quotes).

Sample test(s)
Input
4
1 1
1 1
1 1
1 1
Output
()()()()
Input
3
5 5
3 3
1 1
Output
((()))
Input
3
5 5
3 3
2 2
Output
IMPOSSIBLE
Input
3
2 3
1 4
1 4
Output
(())()

一把一把的泪啊,,,看错题搞了很久,,,然后dp时输出串也搞了很久,,,原来水水的贪心就能过,,,泪流满面,

转一下贪心的思路: http://www.cnblogs.com/wuyuewoniu/p/4256013.html

CF上给这道题打了dp和greedy两个标签,应该是两种做法都可以吧。下面说贪心的做法。

题意:

有一些配好对的括号,现在已知第i对括号,左右括号的距离在[Li, Ri]区间中。按照左括号出现的顺序编号。

输出原括号序列。

分析:

因为括号是以栈的形式配对的,所以我们将这些区间也以栈的形式存储。

假设第i对括号的左括号在位置p,则右括号只能在[p+Li, p+Ri]这个区间中。

每放一个左括号,就将右括号对应的区间入栈。

贪心的办法是,如果当前位置位于栈顶区间的范围内,则尽早入栈。

贪心的理由是:因为早点使栈顶的括号配对,就有更大的机会使栈顶的第二队括号配上对。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<string> #define N 1205
#define M 105
#define mod 1000000007
//#define p 10000007
#define mod2 1000000000
#define ll long long
#define LL long long
#define eps 1e-6
#define inf 100000000
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n;
char s[N];
int l[N],r[N];
int flag;
int dp[][]; void ini()
{
memset(dp,-,sizeof(dp));
int i;
for(i=;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
}
flag=;
s[*n]='\0';
} int fun(int now,int tot,int st,int en)
{
// printf("now=%d tot=%d st=%d en=%d\n",now,tot,st,en);
int f1,f2;
int i;
int tot1,tot2;
int ss,ee;
if(dp[now][tot]!=-){
return dp[now][tot];
}
if(tot==){
if(l[now]==){
dp[now][tot]=;
return ;
}
else{
dp[now][tot]=;
return ;
}
}
ss=l[now];ee=r[now];
if(ss%==) ss++;
if(ee%==) ee--;
for(i=ss;i<=min(ee,en-st);i+=){
tot1=(i+)/;
tot2=tot-tot1;
//printf(" i=%d tot1=%d tot2=%d\n",i,tot1,tot2);
if(tot2<) break;
if(tot1==){
f2=fun(now+,tot2,st+,en);
if(f2>=){
dp[now][tot]=;
return ;
}
}
else if(tot1==tot){
f1=fun(now+,tot1-,st+,en-);
if(f1>=){
dp[now][tot]=i;
return ;
}
}
else{
f1=fun(now+,tot1-,st+,st+i-);
f2=fun(now+tot1,tot2,st+i+,en);
if(f1>= && f2>=){
dp[now][tot]=i;
return ;
}
}
}
dp[now][tot]=;
return ;
} void solve()
{
flag=fun(,n,,*n);
} void print(int now,int tot)
{
int tot1,tot2;
tot1=(dp[now][tot]+)/;
tot2=tot-tot1;
printf("(");
if(tot1!=)
print(now+,tot1-);
printf(")");
if(tot1!=tot)
print(now+tot1,tot2); } void out()
{
/* int i,j;
printf("flag=%d\n",flag);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
printf(" i=%d j=%d dp=%d\n",i,j,dp[i][j]);
}
}*/
if(flag==){
printf("IMPOSSIBLE\n");
}
else{
print(,n);
printf("\n");
//printf("%s\n",s);
}
} int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int ccnt=1;ccnt<=T;ccnt++)
//while(T--)
while(scanf("%d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}

Codeforces Round #288 (Div. 2) E. Arthur and Brackets [dp 贪心]的更多相关文章

  1. Codeforces Round #288 (Div. 2) E. Arthur and Brackets 贪心

    E. Arthur and Brackets time limit per test 2 seconds memory limit per test 128 megabytes input stand ...

  2. Codeforces Round #288 (Div. 2) E. Arthur and Brackets

    题目链接:http://codeforces.com/contest/508/problem/E 输入一个n,表示有这么多对括号,然后有n行,每行输入一个区间,第i行的区间表示从前往后第i对括号的左括 ...

  3. Codeforces Round #288 (Div. 2) C. Anya and Ghosts 模拟 贪心

    C. Anya and Ghosts time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心

    E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...

  5. 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts

    题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...

  6. 贪心 Codeforces Round #288 (Div. 2) B. Anton and currency you all know

    题目传送门 /* 题意:从前面找一个数字和末尾数字调换使得变成偶数且为最大 贪心:考虑两种情况:1. 有偶数且比末尾数字大(flag标记):2. 有偶数但都比末尾数字小(x位置标记) 仿照别人写的,再 ...

  7. Codeforces Round #297 (Div. 2)D. Arthur and Walls 暴力搜索

    Codeforces Round #297 (Div. 2)D. Arthur and Walls Time Limit: 2 Sec  Memory Limit: 512 MBSubmit: xxx ...

  8. BFS Codeforces Round #297 (Div. 2) D. Arthur and Walls

    题目传送门 /* 题意:问最少替换'*'为'.',使得'.'连通的都是矩形 BFS:搜索想法很奇妙,先把'.'的入队,然后对于每个'.'八个方向寻找 在2*2的方格里,若只有一个是'*',那么它一定要 ...

  9. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

随机推荐

  1. Android(java)学习笔记147:自定义SmartImageView(继承自ImageView,扩展功能为自动获取网络路径图片)

    1. 有时候Android系统配置的UI控件,不能满足我们的需求,Android开发做到了一定程度,多少都会用到自定义控件,一方面是更加灵活,另一方面在大数据量的情况下自定义控件的效率比写布局文件更高 ...

  2. Objective-C分类 (category)和扩展(Extension) 的区别

    http://blog.csdn.net/yhawaii/article/details/6992094 http://blog.163.com/wangy_0223/blog/static/4501 ...

  3. 在Phonegap下实现oAuth认证

    原文:http://www.kuqin.com/mobile/20120719/322873.html 前段时间做过两次关于Phonegap的现场交流会议分享.基本上把Phonegap的一些特性和大家 ...

  4. 【Java_基础】java类加载过程与双亲委派机制

    1.类的加载.连接和初始化 当程序使用某个类时,如果该类还未被加载到内存中,则系统会通过加载.连接.初始化三个步骤来对类进行初始化.如果没有意外,jvm将会连续完成这三个步骤,有时也把这三个步骤统称为 ...

  5. Python Third Day-文件处理

    文件处理 打开文件,得到文件句柄并赋值给一个变量f=open('a.txt','r',encoding='utf-8')#默认打开的方式为r指的是文本文件,全名为‘rt’#w文件方式指的是如果有a.t ...

  6. systemverilog(3)之Randomize

    what to randomize? (1) primary input data <==one data (2)encapsulated input data <== muti grou ...

  7. 收集自网络上有关Kali的各种源

    更新源总结 #更新源 gedit /etc/apt/sources.list   #中科大kali源   deb http://mirrors.ustc.edu.cn/kali kali-rollin ...

  8. 剑指Offer(书):树的子结构

    题目:输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 分析:关于二叉树大部分适应于递归结构. public boolean HasSubtree(TreeN ...

  9. python图像插值

    最近邻:选择离它所映射到的位置最近的输入像素的灰度值为插值结果. 最临近插值 图像的缩放很好理解,就是图像的放大和缩小.传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画.当然,在 ...

  10. FX3 DMA生产者消费者ID代表的含义

    在开发FX3的时候,觉得赛普拉斯的库注释太少,很多时候无法理解代码含义.由于使用DMA,需要理解DMA生产者消费者代表的含义,经过多方查找,决定记录下来. 在cyu3dma.h中对SocketID进行 ...