在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章。

http://blog.csdn.net/xcgspring/article/details/4749075

//快速傅里叶变换
/*
入口参数:
inv: =1,傅里叶变换; =-1,逆傅里叶变换
N:输入的点数,为偶数,一般为2的幂次级,2,4,8,16...
k: 满足N=2^k(k>0),实质上k是N个采样数据可以分解为偶次幂和奇次幂的次数
real[]: inv=1时,存放N个采样数据的实部,inv=-1时,存放傅里叶变换的N个实部
imag[]: inv=1时,存放N个采样数据的虚部,inv=-1时,存放傅里叶变换的N个虚部 出口参数:
real[]: inv=1时,返回傅里叶变换的实部,inv=-1时,返回逆傅里叶变换的实部
imag[]: inv=1时,返回傅里叶变换的虚部,inv=-1时,返回逆傅里叶变换的虚部
*/
void FFT::dealFFT(double real[], double imag[], double dSp[], int N, int k, int inv)
{
int i, j, k1, k2, m, step, factor_step;
double temp_real, temp_imag, factor_real, factor_imag;
if (inv != && inv != -)
return; //double *real = new double[N];
//double *imag = new double[N];
//倒序
j = ;
for (i = ; i < N; i++)
{
if (j>i)
{
temp_real = real[j];
real[j] = real[i];
real[i] = temp_real; temp_imag = imag[j];
imag[j] = imag[i];
imag[i] = temp_imag;
}
m = N / ;
while (j >= m&&m != )
{
j -= m;
m >>= ;
}
j += m;
} //蝶形运算
for (i = ; i < k; i++)
{
step = << (i + );
factor_step = N >> (i + ); //旋转因数变化速度 //初始化旋转因子
factor_real = 1.0;
factor_imag = 0.0; for (j = ; j < step / ; j++)
{
for (k1 = j; k1 < N; k1 += step)
{
k2 = k1 + step / ; //蝶形运算的两个输入 /* temp_real = real[k1] + real[k2] * factor_real - imag[k2] * factor_imag;
temp_imag = imag[k1] + real[k2] * factor_imag + imag[k2] * factor_real;
real[k2] = real[k1] - (real[k2] * factor_real - imag[k2] * factor_imag);
imag[k2] = imag[k1] - (real[k2] * factor_imag + imag[k2] * factor_real);
real[k1] = temp_real;
imag[k1] = temp_imag;*/
//上面方法虽然直白,但效率太低,稍微改变结构如下:
temp_real = real[k2] * factor_real - imag[k2] * factor_imag;
temp_imag = real[k2] * factor_imag + imag[k2] * factor_real;
real[k2] = real[k1] - temp_real;
imag[k2] = imag[k1] - temp_imag;
real[k1] = real[k1] + temp_real;
imag[k1] = imag[k1] + temp_imag;
} factor_real = inv*cos(- * PI*(j + )*factor_step / N);
factor_imag = inv*sin(- * PI*(j + )*factor_step / N);
}
} if (inv == -)
{
for (i = ; i <= N - ; i++)
{
real[i] = real[i] / N;
imag[i] = imag[i] / N;
}
}
for (i = ; i<N;i++)
{
dSp[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]);
}
}

一般好像需要进行下转换,即后半部分和前半部分置换,即1234变成3412.

void  FFT::FFTShift(double dp[], int len)
{
for (int i = ; i < len / ; i++)
{
double tmp = dp[i];
dp[i] = dp[i + len / ];
dp[i + len / ] = tmp;
}
}
此时得到的应该是实部和虚部解出来的频谱图的Y轴电压值,一般频谱图Y轴为dB,因此需要进行转换
void FFT::getFFT(double dRe[], double dIm[], double dSp[], int len, int nBits, double dWorkingImpedance)
{
dealFFT(dRe, dIm, dSp, len, nBits, );
FFTShift(dSp,len); //此时得到的应该是实部和虚部解出来的频谱图的Y轴电压值,还需要转换
////dBW = 10lg(电压^2/阻抗);dBm =dBW+30,注意电压单位是V
for (int i = ; i<len; i++)
{
dSp[i] = * log10(dSp[i] * dSp[i] / dWorkingImpedance)+;
}
}
getFFT()输出之后的dp才是要的频谱图Y轴值,频谱图X轴的坐标得到通过以下方式:

//X轴精确度,采样频率/数据个数 = 步长
m_DeltaX_S = m_dataPara.nSampleFrequency / nDataNumOfPage_S;

data_SX[i / ] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/;//中心频率+当前点*步长-带宽/2

在项目中,实际代码如下:

int count = ;
for (int i = ; i < nDataNumOfPage_S * ; i++)
{
if (i % == )
data_SQ[i / ] = data_S[i] * m_DeltaY_S;
else
data_SI[i / ] = data_S[i] * m_DeltaY_S; if (i % == )
{
count++;
data_SX[i / ] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/;
}
}
m_dataPara.nWorkingImpedance = ;
FFT fft;
int nBits = log10(nDataNumOfPage_S) / log10();//因为参数需要是2的N次方
fft.getFFT(data_SQ, data_SI, data_SS, nDataNumOfPage_S, nBits, m_dataPara.nWorkingImpedance); LoadData_S(data_SX, data_SS, nDataNumOfPage_S);
。。。

其他参考文章:

http://blog.sina.com.cn/s/blog_65d639d50101buo1.html

http://blog.csdn.net/hippig/article/details/8778753

http://www.makaidong.com/%E5%8D%9A%E5%AE%A2%E5%9B%AD%E6%8E%92%E8%A1%8C%E6%A6%9C/20151025/365773.html

[C++] 频谱图中 FFT快速傅里叶变换C++实现的更多相关文章

  1. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  2. OI中的快速傅里叶变换(FFT)

    快速傅里叶变换(FFT)                                                                               ---- LLpp ...

  3. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  4. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  5. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  6. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  7. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  8. FFT快速傅里叶变换

    FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...

  9. 浅谈FFT(快速傅里叶变换)

    本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详 ...

随机推荐

  1. UVA10917 A walk trough the Forest (最短路,dp)

    求出家到其他点的最短路径,题目的条件变成了u->v不是回头路等价于d[u]>d[v]. 然后根据这个条件建DAG图,跑dp统计方案数,dp[u] = sum(dp[v]). #includ ...

  2. sort函数的使用

    此篇当作自己的笔记(水平太菜,这都一直没搞明白) sort()函数的用法1)sort函数包含在头文件<algroithm>中,还要结合using namespace std2)sort有三 ...

  3. WPF中单选框RadioButton

    单选框RadioButton的基本使用: <StackPanel Margin="10"> <Label FontWeight="Bold"& ...

  4. java反序列化字节转字符串工具

    https://github.com/NickstaDB/SerializationDumper SerializationDumper-v1.1.jar 用法 : java -jar Seriali ...

  5. JDBC连接数据库详解

    JDBC连接数据库 •创建一个以JDBC连接数据库的程序,包含7个步骤: 1.加载JDBC驱动程序: 在连接数据库之前,首先要加载想要连接的数据库的驱动到JVM(Java虚拟机),这通过java.la ...

  6. servlet上传多个文件(乱码解决)

    首先,建议将编码设置为GB2312,并在WEB-INF\lib里导入:commons-fileupload-1.3.jar和commons-io-2.4.jar, 可百度下下载,然后你编码完成后,上传 ...

  7. 第五次作业:Excel制作英文课程表

    要求: 一.内外变宽线条与颜色图同,表格有底纹色彩 二.横向打印,上下左右居中,表格标题居中,表头斜线,斜线两边加文字 三.设置打开密码

  8. Spring根据XML配置文件 p名称空间注入属性(property后出现,简便但只针对基本数据类型管用,自定义集合等引用类型无效)

    要生成对象并通过名称空间注入属性的类 代码如下: package com.swift; public class User { private String userName; public void ...

  9. (26)zabbix脚本报警介质自定义(钉钉)

    zabbix机器人告警配置 首先在钉钉中创建一个群然后设置群机器人添加自定义机器人(webhook...) 添加后复制其中的webhook地址到报警脚本dingding.py中的webhook=... ...

  10. centos配置本地yum源和光盘挂载

    说明:以centos6.5为例创建本地yun源,centos7的创建方法和centos6的是一样的. 创建挂载目录: mkdir /dvd 开机自动挂载光盘 echo /dev/cdrom   /dv ...