P5154 数列游戏(区间dp)
果然和dp有关的东西我绝对做不出来啊……
设\(dp[i][j]\)表示消完区间\([i,j]\)中的数之后能得到的最大分数,如果消不完则为\(-inf\),否则枚举断点。顺便如果\(a[i],a[j]\)不互质可以用\(dp[i+1][j-1]+b[i]+b[j]\)来更新答案
然后设\(f[i]\)为前缀的答案,直接普通的dp即可
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define inf 1e18
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1005;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
ll dp[N][N],f[N];int a[N],b[N];int n;bool Gcd[N][N];
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,1,n)a[i]=read();
fp(i,1,n)b[i]=read();
fp(i,1,n)fp(j,i+1,n)Gcd[i][j]=gcd(a[i],a[j])>1?1:0;
fp(i,1,n-1)dp[i][i+1]=Gcd[i][i+1]?b[i]+b[i+1]:-inf;
fp(j,4,n)if(~j&1)fp(i,1,n-j+1){
dp[i][i+j-1]=-inf;
if(Gcd[i][i+j-1])dp[i][i+j-1]=dp[i+1][i+j-2]+b[i]+b[i+j-1];
fp(k,i+1,i+j-2)if((k-i)&1)
cmax(dp[i][i+j-1],dp[i][k]+dp[k+1][i+j-1]);
}fp(i,2,n){
f[i]=f[i-1];
fp(j,1,i-1)cmax(f[i],f[j-1]+dp[j][i]);
}printf("%lld\n",f[n]);
return 0;
}
P5154 数列游戏(区间dp)的更多相关文章
- P1005 矩阵取数游戏[区间dp]
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的\(m*n\)的矩阵,矩阵中的每个元素\(a_{i,j}\)均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n个.经过m次后 ...
- 圆桌游戏(区间DP)
2.圆桌游戏 (game.cpp/c/pas) [问题描述] 有一种圆桌游戏是这样进行的:n个人围着圆桌坐成一圈,按顺时针顺序依次标号为1号至n号.对1<=i<=n的i来说,i号的左边是i ...
- BZOJ 2121: 字符串游戏 区间DP + 思维
Description BX正在进行一个字符串游戏,他手上有一个字符串L,以及其他一些字符串的集合S,然后他可以进行以下操作:对 于一个在集合S中的字符串p,如果p在L中出现,BX就可以选择是否将其删 ...
- 洛谷 P1043 数字游戏 区间DP
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 多边形游戏——区间dp
题目描述 多边形(Polygon)游戏是单人玩的游戏,开始的时候给定一个由N个顶点构成的多边形(图1所示的例子中,N=4),每个顶点被赋予一个整数值,而每条边则被赋予一个符号:+(加法运算)或者*(乘 ...
- qscoj 喵哈哈村的打印机游戏 区间dp
点这里去看题 区间dp ,dp[l][r][d]代表从l到r的区间底色为d,具体看代码 第一次见到区间dp...两个小时对着敲了五遍终于自己敲懂了一遍ac #include<bits/stdc+ ...
- 【bzoj2121】字符串游戏 区间dp
题目描述 给你一个字符串L和一个字符串集合S,如果S的某个子串在S集合中,那么可以将其删去,剩余的部分拼到一起成为新的L串.问:最后剩下的串长度的最小值. 输入 输入的第一行包含一个字符串,表示L. ...
- Leetcode_877. 石子游戏(区间dp)
偶数堆石子,只能从首尾取,取多的赢. 每次操作会产生两个子状态,区间dp,记得先枚举长度. code class Solution { public: int dp[505][505]; bool s ...
- 1166 矩阵取数游戏[区间dp+高精度]
1166 矩阵取数游戏 2007年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description [ ...
随机推荐
- ios9定位服务的app进入后台三分钟收不到经纬度,应用被挂起问题及解决方式
原来定位服务是10分钟收不到定位信息就挂起定位,如今变为最短3分钟,预计都是为了省电吧. 仅仅要你开启应用的后台定位,而且10分钟有一次定位,那么苹果就不会关闭你的线程.如今变成3分钟.若你的应用开启 ...
- openwrt gstreamer实例学习笔记(六. gstreamer Pads及其功能)
一:概述 如我们在Elements一章中看到的那样,Pads是element对外的接口.数据流从一个element的source pad到另一个element的sink pad.pads的功能(cap ...
- DCOS之Mesos-DNS介绍
DCOS的Mesos-DNS它主要提供域名解析服务,Mesos-DNS 在DCOS框架中支持服务发现,同意应用程序和服务通过域名系统(DNS)来相互定位.DCOS中的 Mesos-DNS充当的角色和在 ...
- 【健康生活】Google、百度之间的选择
没有什么技术性的分析,仅仅是个人吐槽而已. 一般人遇到问题就会说一句"百度一下",说实话,百度在中国推广的真的非常不错,可谓是家喻户晓,搜索个八卦新闻,小文章,小电影什么的的确非常 ...
- 理解yarn平台,理解万岁,肤浅理解也万岁~
从Hadoop1到Hadoop2很大程度上解放了Jobtracker资源调度的问题,这就得多亏了yarn平台了.我知道的,除了我们的大豆瓣用的是Mesos,咱们国家可以说应该是99.99%都使用的是y ...
- 4.改变eclipse选中文字颜色
window-preferences-general-editors-text editors-annotations-occurrences 和 window-preferences-general ...
- XFire WebService demo
XFire创建WebService实例应用 XFire使得在JavaEE应用中发布Web服务变得轻而易举.和其他Web服务引擎相比, XFire的配置非常简单,可以非常容易地和Spring集成. ...
- hihoCoder 1582 Territorial Dispute 【凸包】(ACM-ICPC国际大学生程序设计竞赛北京赛区(2017)网络赛)
#1582 : Territorial Dispute 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In 2333, the C++ Empire and the Ja ...
- proc_create的使用方法
proc_create的使用方法 proc文件系统是个有用的东东.创建一个proc虚拟文件,应用层通过读写该文件,即可实现与内核的交互.proc虚拟文件是如何创建的呢? 先看看比较简单的,创建proc ...
- 缓存框架Ehcache相关
单点缓存框架 只能针对单个jvm中,缓存容器存放jvm中,每个缓存互不影响 Ehcache gauva chache 内置缓存框架 jvm缓存框架 分布式缓存框架(共享缓存数据) Redis ...