Android RxJava 2.0中backpressure(背压)概念的理解
英文原文:https://github.com/ReactiveX/RxJava/wiki/Backpressure
Backpressure(背压、反压力)
在rxjava中会经常遇到一种情况就是被观察者发送消息太快以至于它的操作符或者订阅者不能及时处理相关的消息。那么随之而来的就是如何处理这些未处理的消息。
举个例子,使用zip
操作符将两个无限大的Observable压缩在一起,其中一个被观察者发送消息的速度是另一个的两倍。一个比较不靠谱的做法就是把发送比较快的消息缓存起来,当比较慢的Observable发送消息的时候取出来并将他们结合在一起。这样做就使得rxjava变得笨重而且十分占用系统资源。
在rxjava中有多重控制流以及背压(backpressure)策略用来应对当一个快速发送消息的被观察者遇到一个处理消息缓慢的观察者。下面的解释将会向你展示你应当怎么设计属于你自己的被观察者和操作符去应对流量控制(flow control)。
Hot and cold Observables, and multicasted Observables
Observable 数据流有两种类型:hot 和 cold。这两种类型有很大的不同。本节介绍他们的区别,以及作为 Rx 开发者应该如何正确的使用他们。
只有当有订阅者订阅的时候, Cold Observable 才开始执行发射数据流的代码。并且每个订阅者订阅的时候都独立的执行一遍数据流代码。 Observable.interval 就是一个 Cold Observable。每一个订阅者都会独立的收到他们的数据流。
我们经常用到的Observable.create 就是 Cold Observable,而 just, range, timer 和 from 这些创建的同样是 Cold Observable。
Hot observables
Hot observable 不管有没有订阅者订阅,他们创建后就开发发射数据流。 一个比较好的示例就是 鼠标事件。 不管系统有没有订阅者监听鼠标事件,鼠标事件一直在发生,当有订阅者订阅后,从订阅后的事件开始发送给这个订阅者,之前的事件这个订阅者是接受不到的;如果订阅者取消订阅了,鼠标事件依然继续发射。
了解更多Hot and cold Observables,参考:
http://blog.csdn.net/jdsjlzx/article/details/51839090
当一个cold observable是multicast(多路广播)(当转换完成时或者方法被调用)的时候,为了应对背压,应当把cold observable转换成hot observable。
cold observable 相当于响应式拉(就是observer处理完了一个事件就从observable拉取下一个事件),hot observable通常不能很好的处理响应式拉模型,但它却是处理流量控制问题的不二候选人,例如使用onBackpressureBuffer或者onBackpressureDrop 操作符,和其他操作符比如operators, throttling, buffers, or windows
.
此段过于抽象,特提供原文如下,如有好的翻译建议请提出。
Cold Observables are ideal for the reactive pull model of backpressure described below. Hot Observables typically do not cope well with a reactive pull model, and are better candidates for some of the other flow control strategies discussed on this page, such as the use of the onBackpressureBuffer or onBackpressureDrop operators, throttling, buffers, or windows.
能避免背压问题的运算符
防止过度创建observable的第一道防线就是使用普通数组去减少observable发送消息的数量,在这一节会使用一些操作符去应对突发的observable发送爆发性数据(一会没有,一会很多)就像下面的这张图片所示:
这些操作符可以通过微调参数确保slow-consuming观察者不被生产可观测的。
Throttling节流
操作符中比如 sample( ) 、 throttleLast( )、 throttleFirst( )、 throttleWithTimeout( ) 、 debounce( ) 允许你通过调节速率来改变Observable发射消息的速度。
以下图表展示如何使用这些操作符。
样本 (或 throttleLast)
sample
操作符定期收集observable发送的数据items,并发射出最后一个数据item。
Observable<Integer> burstySampled = bursty.sample(, TimeUnit.MILLISECONDS);
上面代码解释,定期且一次收集5个item,发射出最后一个item。
官网解释:http://reactivex.io/documentation/operators/sample.html
throttleFirst
跟sample有点类似,但是并不是把观测到的最后一个item发送出去,
Observable<Integer> burstyThrottled = bursty.throttleFirst(, TimeUnit.MILLISECONDS);
debounce (or throttleWithTimeout)
debounce操作符会只发送两个在规定间隔内的时间发送的序列的最后一个。
Observable<Integer> burstyDebounced = bursty.debounce(, TimeUnit.MILLISECONDS);
Buffers and windows 缓冲区和窗口
可以使用操作符比如buffer( ) 或者window( ) 收集过度生成消息的Observable的数据items,然后发射出较少使用的数据。缓慢的消费者可以决定是否处理每个集合中的某一个特定的项目,或处理集合中的某种组合,或为集合中的每一项预定计划工作,这都要视情况处理。
以下图表展示如何使用这些操作符。
buffer
你可以定期关闭并释放突发性的 Observable 缓冲区。
Observable<List<Integer>> burstyBuffered = bursty.buffer(, TimeUnit.MILLISECONDS);
在突发期间你可以得到的想要的,并在缓冲区收集数据和最终在突发结束的时候释放缓存。使用debounce操作符释放缓存并关闭指示器buffer操作符。
此段超过本人翻译水平,特提供原文如下,如有好的翻译建议请提出。
Or you could get fancy, and collect items in buffers during the bursty periods and emit them at the end of each burst, by using the debounce operator to emit a buffer closing indicator to the buffer operator:
使用线程阻塞
处理过快生产item的其他策略就是使用线程阻塞,但是这么做违背了响应式设计和非阻塞模型设计,但是它的确是一个可行的选择。在rxJava中并没有操作符可以做到这一点。
如果observable发送消息,subscriber消耗消息都是在同一个线程这将很好的处理这个问题,但是你要知道,在rxJava中,很多时候生产者和消费者都不在同一个线程。
如何建立“响应式拉动(reactive pull)”backpressure
当subscribe订阅observable的时候可以通过调用subscribe.request(n),n是你想要的observable发送出来的量。
当在onNext()方法里处理完数据itme后,你能重新调用 request()方法,通知Observable发射数据items。下面是个例子。
如何建立“响应式拉动(reactive pull)”backpressure
当subscribe订阅observable的时候可以通过调用subscribe.request(n),n是你想要的observable发送出来的量。
当在onNext()方法里处理完数据item后,你能重新调用 request()方法,通知Observable发射数据items。下面是个例子。
someObservable.subscribe(new Subscriber<t>() {
@Override
public void onStart() {
request();
} @Override
public void onCompleted() {
// gracefully handle sequence-complete
} @Override
public void onError(Throwable e) {
// gracefully handle error
} @Override
public void onNext(t n) {
// do something with the emitted item "n"
// request another item:
request();
}
});
你可以通过一个神奇数字request, request(Long.MAX_VALUE),禁用反应拉背力和要求Observable按照自己的步伐发射数据。request(0)是一个合法的调用,但没有奏效。请求值小于零的请求会导致抛出一个异常。
Reactive pull backpressure isn’t magic
backpressure 不会使得过度生产的observable的问题消失,这只是提供了一种更好的解决问题的方法。 让我们更仔细的研究刚刚说到的zip操作符的问题。
这里有两个observable,a和b,b发射item比a更加的频繁,当你想zip这两个observable的时候,你需要把a发送出来的第n个和b发送出来的第n个对象处理,然而由于b发送出来的速率更快,这时候b已经发送出了n+1~n+m个消息了,这时候你要想要把a的n+1~n+m个消息结合的话,就必须持有b已经发送出来的n+1~n+m消息,同时,这意味着缓存的数量在不断的增长。
当然你可以给b添加操作符throttling,但是这意味着你将丢失某些从b发送出来的项,你真正想要做的其实就是告诉b:“b你需要慢下来,但是你要保持你给我的数据是完整的”。
响应式拉(reective pull)模型可以当你做到这一点,subscriber从observable那里拉取数据,这比较通常在observable那里推送数据这种模式形成鲜明的对比。
在rxJava中,zip操作符正是使用了这种技巧。它给每个源observable维护了一个小的缓存池,当它的缓存池满了以后,它将不会从源observable那里拉取item。每当zip发送一个item的时候,他从它的缓存池里面移除相应的项,并从源observable那里拉取下一个项。
在rxJava中,很多操作符都使用了这种模式(响应式拉),但是有的操作符并没有使用这种模式,因为他们也许执行的操作跟源observable处于相同的进程。在这种情况下,由于消耗事件会阻塞本进程,所以这一项的工作完成后,才有机会收到下一项。还有另外一种情况,backpressure也是不适合的,因为他们有指定的其他方式去处理流量控制,这些特殊的情况在rxJava的java文档里面都会有详细说明为毛。
但是,observable a和b必须正确的响应request()方法,如果一个observable还没有被支持响应式拉(并不是每个observable都会支持),你可以采取以下其中一种操作都可以达到backpressure的行为:
onBackpressurebuffer
给observable发送出来的数据持有一个缓存,当request方法被调用的时候,给下层流发送一个item。
这个操作符还有一个实验性的版本允许去设置这个缓存池的大小,但当缓存池满了以后将会终止执行并抛出异常。
onBackpressureDrop
命令observable丢弃后来的事件,直到subscriber再次调用request(n)方法的时候,就发送给它的subscriber调用时间以后的n个事件。
onBackpressureBlock (实验性的, not in RxJava 1.0)
源Observable的线程操作直到Subscriber发出请求,然后只要有挂起的请求就结束线程。
如果你不允许这些操作符操作不支持背压的Observable,或者Subscriber或一些操作符尝试申请活性拉反压力,你会遇到一个MissingBackpressureException,你将被告知通过onError()进行回调。
Flowable与Observable
最后,为了大家更好的理解backpressure概念,这里补充说一下Flowable。
Observable在RxJava2.0中新的实现叫做Flowable, 同时旧的Observable也保留了。因为在 RxJava1.x 中,有很多事件不被能正确的背压,从而抛出MissingBackpressureException。
举个简单的例子,在 RxJava1.x 中的 observeOn, 因为是切换了消费者的线程,因此内部实现用队列存储事件。在 Android 中默认的 buffersize 大小是16,因此当消费比生产慢时, 队列中的数目积累到超过16个,就会抛出MissingBackpressureException, 初学者很难明白为什么会这样,使得学习曲线异常得陡峭。
而在2.0 中,Observable 不再支持背压,而Flowable 支持非阻塞式的背压。Flowable是RxJava2.0中专门用于应对背压(Backpressure)问题。所谓背压,即生产者的速度大于消费者的速度带来的问题,比如在Android中常见的点击事件,点击过快则经常会造成点击两次的效果。其中,Flowable默认队列大小为128。并且规范要求,所有的操作符强制支持背压。幸运的是, Flowable 中的操作符大多与旧有的 Observable 类似。
Android RxJava 2.0中backpressure(背压)概念的理解的更多相关文章
- Android 实现Path2.0中绚丽的的旋转菜单
上图先: 那么下面开始吧~ 首先,将整个菜单动画分解开来. 1. 一级菜单按钮的旋转动画2个,十字和叉叉状态的转换. 2. 二级菜单按钮的平移动画2个,弹簧效果的in和out ...
- Android Studio 3.0 新特性
最新Android Studio版本是Android Studio 3.0,本文提供了所有新功能和更改的摘要. 所有这些功能都可以在最新的金丝雀版本中发布,但beta测试版本可能尚未提供. 核心IDE ...
- Android Studio 3.0 下载 使用新功能介绍
谷歌2017发布会更新了挺多内容的,而且也发布了AndroidStudio3.0预览版,一些功能先睹为快.(英语一般,有些翻译不太好) 下载地址 https://developer.android.g ...
- java中容器的学习与理解
以前一直对于java中容器的概念不理解,虽然学习过,但始终没有认真理解过,这几天老师提出了这样一个问题,你怎么理解java中的容器.瞬间就蒙了.于是各种搜资料学习了一下,下面是我学习后整理出来的的一些 ...
- Vue2.0 中,“渐进式框架”和“自底向上增量开发的设计”这两个概念是什么?(转)
https://www.zhihu.com/question/51907207?rf=55052497 徐飞 在我看来,渐进式代表的含义是:主张最少. 每个框架都不可避免会有自己的一些特点,从而会对使 ...
- [Android]在Dagger 2中使用RxJava来进行异步注入(翻译)
以下内容为原创,欢迎转载,转载请注明 来自天天博客: # 在Dagger 2中使用RxJava来进行异步注入 > 原文: 几星期前我写了一篇关于在Dagger 2中使用*Producers*进行 ...
- android 4.0 中出错 java.lang.UnsupportedOperationException
在android4.0中 画图的时候使用: canvas.clipPath(path, Region.Op.XOR); 报错 java.lang.UnsupportedOperationExcept ...
- Android 7.0 中 ContentProvider 实现原理
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:汪毅雄 导语: 本文描述了ContentProvider发布者和调用者这两在Framework层是如何实现的. 作为Android的四大 ...
- PCIE 3.0中使用的动态均衡概念
一.PCIE 3.0中使用的动态均衡概念 因为PCIE 3.0信号的速率可以达到8Gb/s,而且链路通道走线也可能会很长,这可能会导致高速信号衰减过大,在接收端无法得到张开的眼图.因此在PCIE 3. ...
随机推荐
- easyui datagrid-detailview 嵌套高度自适应
实现效果 原因 异步加载,明细展开时,可能会遇到父列表不能自动适应子列表高度的变化 具体代码 $('#centerdatagrid').datagrid({ url:'${ctx}/offer/off ...
- SqlServer2008发布订阅(数据同步)
目录 1. 发布必备条件 1.1. 数据库故障还原模型必需为完全还原模型 1.2. 数据库被同步的数据表必须有主键 1.3. 计算机名称来进行SQLServer服务器的注册 1.4. SQLServe ...
- cache and database
This article referenced from http://coolshell.cn/articles/17416.html We all know that high concurren ...
- tomcat会自动解压webapps目录下的war包
如图,把war包放到tomcat的webapps目录,会被自动解压
- Elasticsearch学习系列之配置文件详解
################################### Cluster ################################### #定义集群名称,默认是elasticse ...
- jQuery异步框架探究1:jQuery._Deferred方法
jQuery异步框架应用于jQuery数据缓存模块.jQuery ajax模块.jQuery事件绑定模块等多个模块,是jQuery的基础功能之中的一个.实际上jQuery实现的异步回调机制能够看做ja ...
- 第6章1节《MonkeyRunner源代码剖析》Monkey原理分析-事件源-事件源概览
在上一章中我们有简要的介绍了事件源是怎么一回事.可是并没有进行详细的描写叙述.那么往下的这几个小节我们就须要把这方面的知识给补充完整. 这一节我们先主要环绕MonkeySourceNetwork这个事 ...
- 详细介绍Linux telnet命令的使用
对Linux系统进行远程登录,Linux telnet命令是必须得掌握的一个知识,虽然telnet并不是唯一的远程登录的方案,但是不可否认它是最常用的,所以很有必要详细了解Linux telnet命令 ...
- AutoreleasePool 分析
前言 AutoreleasePool自己主动释放池,对于自己主动释放对象的作用怎样? 释放池中的自己主动释放对象什么时候会被释放? MRC环境下 场景1 NSString *string_var_ = ...
- xenserver PXE安装系统错误的解决
刚开始在xenserver里找pxe启动安装系统找了半天,最后在NEW VM里的template里选择other install media 里找到pxe启动,启动之后加载映像,安装到一半又停止了, ...