Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

Input: [1,2,3,0,2]
Output: 3
Explanation: transactions = [buy, sell, cooldown, buy, sell]
----------------------------
 
Solution:

The idea is as follows:

First, think about what we can do on day i? You either have one stock or you don't on day i. For each case, you have two options, making a total of four possible actions on day i:

  1. you have 1 stock and you sell it
  2. you have 1 stock and you do nothing
  3. you have 0 stock and you buy stock i
  4. you have 0 stock and you do nothing

As you can imagine, these four actions are correlated between day i-1 and day i. For example, if you take action 1 on day i, you then have either taken action 2 or 3 on day i-1 but not 1 or 4. In precise, two consecutive days are related as follows:

  1. if you take action 1 on day i ==> you have either taken action 2 or 3 on day i-1
  2. if you take action 2 on day i ==> you have either taken action 2 or 3 on day i-1
  3. if you take action 3 on day i ==> you must have taken action 4 on day i-1 (you can not sell on day i-1 due to cool down)
  4. if you take action 4 on day i ==> you have either taken action 1 or 4 on day i-1

Now you want to maximize your total profit, but you don't know what action to take on day i such that you get the total maximum profit, so you try all 4 actions on every day. Suppose you take action 1 on day i, since there are two possible actions on day i-1, namely actions 2 and 3, you would definitely choose the one that makes your profit on day i more. Same thing for actions 2 and 4. So we now have an iterative algorithm.

Before coding, one detail to emphasize is that the initial value on day 0 is important. You basically cannot take action 1, so the corresponding profits should be 0. You cannot take action 2 in practice, but you cannot set up the profit to 0, because that means you don't have a stock to sell on day 1. Therefore, the initial profit should be negative value of the first stock. You can also think of it as you buy the stock on day -1 and do nothing on day 0.

 public int maxProfit(int[] prices) {

     if (prices.length < 1) return 0;

     int has0_buy = -prices[0];
int has0_doNothing = 0;
int has1_sell = 0;
int has1_doNothing = -prices[0]; for (int i = 1; i < prices.length; i++) {
int l1 = has0_buy;
int l2 = has0_doNothing;
int l3 = has1_sell;
int l4 = has1_doNothing; has0_buy = l2 + -prices[i];
has0_doNothing = Math.max(l3, l2);
has1_sell = Math.max(l1,l4) + prices[i];
has1_doNothing = Math.max(l1, l4);
} return Math.max(has0_doNothing, has1_sell);
}

Leetcode - 309. Best Time to Buy and Sell Stock with Cooldown的更多相关文章

  1. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. LeetCode 309. Best Time to Buy and Sell Stock with Cooldown (stock problem)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. [leetcode] 309. Best Time to Buy and Sell Stock with Cooldown(medium)

    原题 思路: 状态转移 出售股票的状态,最大利润有两种可能. 一,和昨天一样不动:二,昨天持有的股票今天卖掉. sell[i] = max(sell[i-1],buy[i-1] + prices[i] ...

  4. LeetCode 309 Best Time to Buy and Sell Stock with Cooldown 解决方案

    题目描述 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 .​ 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票): 你不能同时参与多笔 ...

  5. leetcode 121. Best Time to Buy and Sell Stock 、122.Best Time to Buy and Sell Stock II 、309. Best Time to Buy and Sell Stock with Cooldown

    121. Best Time to Buy and Sell Stock 题目的要求是只买卖一次,买的价格越低,卖的价格越高,肯定收益就越大 遍历整个数组,维护一个当前位置之前最低的买入价格,然后每次 ...

  6. 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  7. 121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票

    121. Say you have an array for which the ith element is the price of a given stock on day i. If you ...

  8. 309. Best Time to Buy and Sell Stock with Cooldown

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  9. 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

随机推荐

  1. 将 数据库中的结果集转换为json格式(三)

    从数据库中得到结果集 public String list() throws Exception { Connection con = null; PageBean pageBean = new Pa ...

  2. Maven 命令参数 整理

    命令参数 备注 mvn -v --version 显示版本信息; mvn -V --show-version 显示版本信息后继续执行Maven其他目标; mvn -h --help 显示帮助信息; m ...

  3. Redis分布式锁----乐观锁的实现,以秒杀系统为例

    本文使用redis来实现乐观锁,并以秒杀系统为实例来讲解整个过程. 乐观锁      大多数是基于数据版本(version)的记录机制实现的.即为数据增加一个版本标识,在基于数据库表的版本解决方案中, ...

  4. NLTK的安装

    一.NLTK:Natural Language Toolkit(自然语言工具包) 下载:http://www.nltk.org pip install nltk 二.使用 import nltk nl ...

  5. Python中的格式化输出

    百分号格式化输出 百分号默认右对齐 %s 字符串 (采用str()的显示) %r 字符串 (采用repr()的显示) %c 单个字符 %b 二进制整数 %d 十进制整数 %i 十进制整数 %o 八进制 ...

  6. C++ cout格式化输出(转)

    C++ cout格式化输出(转) 这篇文章主要讲解如何在C++中使用cout进行高级的格式化输出操作,包括数字的各种计数法(精度)输出,左或右对齐,大小写等等.通过本文,您可以完全脱离scanf/pr ...

  7. JAVA-Enum 枚举

    [参考]枚举类名建议带上 Enum 后缀,枚举成员名称需要全大写,单词间用下划线隔开. 说明:枚举其实就是特殊的类,域成员均为常量,且构造方法被默认强制是私有. 正例:枚举名字为 ProcessSta ...

  8. Sqlserver中的储存过程

    一.什么是存储过程(Stored Procedure) 存储过程是一段存储在数据库的“子程序”,本质是一个可重复使用的SQL代码块,可以理解为数据库端的“方法”. 存储过程的好处: ①提高性能:由于数 ...

  9. javascript的作用域和闭包(三)闭包与模块

    一些很重要的说明:前面三篇博客详细的介绍了,引擎与编译器和作用域的关系,重点需要理解的是编译器中的分词与词法分析,JavaScript的特有的“赋值操作的左右侧”引用操作:编译阶段的词法作用域的工作原 ...

  10. HDU 1052(田忌赛马 贪心)

    题意是田忌赛马的背景,双方各有n匹马,下面两行分别是田忌和齐王每匹马的速度,要求输出田忌最大的净胜场数*每场的赌金200. 开始的时候想对双方的马匹速度排序,然后比较最快的马,能胜则胜,否则用最慢的马 ...