noi.ac 集合
A.集合
题面
就是给你一个 包含 1~n 的集合,让你求它的大小为 k 的子集 s 的 \(T^{min(s)}\) 的期望值, T 为给出值, min(s) 表示 s 集合中的最小值
一般的,答案可以写作:
\]
其中 \([n]\) 表示 1~n 的全集 , \(|s|\) 表示集合 s 的大小(元素个数)
一道二项式定理的例题?虽说我根本做不到二项式定理那一步 23333
首先我们转化一下答案表达式,让它更可做:
\]
式子的意思就是说,我们先选择一个最小值,然后在比他大的元素中选出 k-1 个
至于这里为什么 i 从 1 到 k ? 因为 \(n-i\) 比 \(k-1\) 小的话不会产生贡献所以不会影响答案咯
然后我们发现答案也可以这么表示:
\]
然后我们发现这里后面的式子就是 k+1 时的 ANS ,于是我们就可以一直这么递归下去,那么答案就可以表示为:
\]
\]
用二项式定理化式子:
\]
到了这里就非常可做了,因为后面的求和是 \(O(k)\) 的,至于组合数?看代码你就知道怎么处理了,然后就是快速幂打打就好了
但还有一个问题,我们要求期望,也就是说算出来的答案要除去方案数,方案数比较好想,就是:\(\sum_{i=1}^{n} (~_{k-1}^{n-i})\) ,这个怎么算?
我们把式子弄好看些:
\]
其实这个东西的答案就是 \((~_ k^n)\) ,这个我们画画杨辉三角然后发现这玩意儿是一列下来的,然后加个零,一路加下来就发现答案停留在 \(C(n,k)\)
code
//by Judge
#include<cstdio>
#include<cstring>
#include<iostream>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define ll long long
using namespace std;
const int mod=998244353;
const int M=1e7+3; typedef int arr[M];
inline int mul(R int x,R int y){return 1ll*x*y%mod;}
inline int inc(R int x,R int y){return x+y>=mod?x+y-mod:x+y;}
inline int qpow(R int x,R int p=mod-2){ R int s=1;
for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;
} int n,k,T,ans,nC,nT; arr V,F;
int main(){ cin>>n>>k>>T,
ans=qpow(T,n),
nT=nC=V[0]=V[1]=F[0]=F[1]=1;
if(T==1) return !puts("1");
fp(i,2,k)
V[i]=mul(V[mod%i],mod-mod/i),
F[i]=mul(F[i-1],V[i]);
fp(i,0,k-1)
ans=inc(ans,mod-mul(nT,mul(nC,F[i]))),
nC=mul(nC,n-i),nT=mul(nT,T-1);
return !printf("%d\n",mul(mul(ans,mul(T,qpow(nT))),qpow(mul(nC,F[k]))));
}
可以看到上面处理组合数的方式是维护下降幂, 然后乘上 \(O(k)\) 处理出来的阶乘逆元 !简直不要太骚...
noi.ac 集合的更多相关文章
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)
题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
随机推荐
- Enum入门【原】
package com.bobo.www.cxf.impl; public enum Traffic { Red(1), Green(2), Yellow(3);//必须最前面 private int ...
- [leetcode-120] 三角形最小路径和
三角形最小路径和 (1过) 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...
- Java基础高级部分(一)
1. 集合部分 1.1 HashMap排序 package cn.Douzi.hashMap01; import java.util.ArrayList; import java.util.Colle ...
- ArcGis Python脚本——批量添加字段
先看如何增加一个字段 函数:arcpy.AddField_management 语法:AddFields_management (in_table, field_description) 参数 说明 ...
- Docker-02 无人值守安装 docker
#!/bin/bash # # 无人值守安装 docker # # # .关闭SELinux # setenforce sed -i 's/SELINUX=enforcinf/SELINUX=disa ...
- Django之用户认证组件
auth模块 之前我们在进行用户登录验证的时候,都是自己写代码,接收用户提交的数据,然后去数据库取数据进行匹配验证,其实Django已经给我们提供了内置的用户认证功能.不信的话你可以打开models. ...
- 细说shiro之三:在独立应用中使用shiro
官网:https://shiro.apache.org/ 1. 下载在非Web环境的独立应用中使用Shiro时,只需要shiro-core组件.在Maven项目中的依赖配置如下: <depend ...
- Retrofit的通讯方式示例
Retrofit有两种通讯方式,同步和异步 异步方式: APIService req; req = RetrofitManager.getInstance().createReq(APIService ...
- luogu 2371 墨墨的等式
1.背包dp #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i<=y;i++) #define ll ...
- 【游记】THUWC2018踹线记
Day1. 早上九点多报道,然后就是试机.一开始有一些懵,没看清门外的通知,操作起来各种懵逼.不过提前适应过了在Linux下面编程,所以问题不大.调了gedit的界面,试了一下对拍,敲了一道试机题,然 ...