A.集合



题面

不知道有没有用的传送门【滑稽

就是给你一个 包含 1~n 的集合,让你求它的大小为 k 的子集 s 的 \(T^{min(s)}\) 的期望值, T 为给出值, min(s) 表示 s 集合中的最小值

一般的,答案可以写作:

\[ANS=E(T^{min(s)} | s∈[n] ,|s|=k)
\]

其中 \([n]\) 表示 1~n 的全集 , \(|s|\) 表示集合 s 的大小(元素个数)

一道二项式定理的例题?虽说我根本做不到二项式定理那一步 23333

首先我们转化一下答案表达式,让它更可做:

\[ANS=\sum_{i=1}^n T^i ( ~^{n-i}_{k-1} )
\]

式子的意思就是说,我们先选择一个最小值,然后在比他大的元素中选出 k-1 个

至于这里为什么 i 从 1 到 k ? 因为 \(n-i\) 比 \(k-1\) 小的话不会产生贡献所以不会影响答案咯

然后我们发现答案也可以这么表示:

\[ANS=T( ~^{n}_k )+\sum_{i=1}^{n-1} (T-1)T^i (~^{n-i}_{~~~ k})
\]

然后我们发现这里后面的式子就是 k+1 时的 ANS ,于是我们就可以一直这么递归下去,那么答案就可以表示为:

\[ANS= T \sum_{i=k}^n (T-1)^{i-k}(~^{n}_i)
\]

\[ANS= T(T-1)^{-k} \sum_{i=k}^n (T-1)^{i}(~^{n}_i)
\]

用二项式定理化式子:

\[ANS= T (T-1)^{-k}~(T^n-\sum_{i=0}^{k-1} (T-1)^i(~^{n}_i))
\]

到了这里就非常可做了,因为后面的求和是 \(O(k)\) 的,至于组合数?看代码你就知道怎么处理了,然后就是快速幂打打就好了

但还有一个问题,我们要求期望,也就是说算出来的答案要除去方案数,方案数比较好想,就是:\(\sum_{i=1}^{n} (~_{k-1}^{n-i})\) ,这个怎么算?

我们把式子弄好看些:

\[\sum_{i=0}^{n-1} (~_{k-1}^{~~~i})
\]

其实这个东西的答案就是 \((~_ k^n)\) ,这个我们画画杨辉三角然后发现这玩意儿是一列下来的,然后加个零,一路加下来就发现答案停留在 \(C(n,k)\)

code

//by Judge
#include<cstdio>
#include<cstring>
#include<iostream>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define ll long long
using namespace std;
const int mod=998244353;
const int M=1e7+3; typedef int arr[M];
inline int mul(R int x,R int y){return 1ll*x*y%mod;}
inline int inc(R int x,R int y){return x+y>=mod?x+y-mod:x+y;}
inline int qpow(R int x,R int p=mod-2){ R int s=1;
for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;
} int n,k,T,ans,nC,nT; arr V,F;
int main(){ cin>>n>>k>>T,
ans=qpow(T,n),
nT=nC=V[0]=V[1]=F[0]=F[1]=1;
if(T==1) return !puts("1");
fp(i,2,k)
V[i]=mul(V[mod%i],mod-mod/i),
F[i]=mul(F[i-1],V[i]);
fp(i,0,k-1)
ans=inc(ans,mod-mul(nT,mul(nC,F[i]))),
nC=mul(nC,n-i),nT=mul(nT,T-1);
return !printf("%d\n",mul(mul(ans,mul(T,qpow(nT))),qpow(mul(nC,F[k]))));
}

可以看到上面处理组合数的方式是维护下降幂, 然后乘上 \(O(k)\) 处理出来的阶乘逆元 !简直不要太骚...

noi.ac 集合的更多相关文章

  1. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  2. NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)

    题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  9. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

随机推荐

  1. shiro的基本认识及做一个简单的授权登陆的例子

    先推荐一个网站,无意中发现的.感觉蛮好的. 推荐一套完整的Shiro Demo,免费的.Shiro Demo:http://www.sojson.com/shiroDemo已经部署到线上,地址是htt ...

  2. zepto.min.js

    /* Zepto v1.1.3 - zepto event ajax form ie - zeptojs.com/license */var Zepto=function(){function L(t ...

  3. hihoCoder #1457 : 后缀自动机四·重复旋律7(后缀自动机 + 拓扑排序)

    http://hihocoder.com/problemset/problem/1457 val[i] 表示状态i所表示的所有字符串的十进制之和 ans= ∑ val[i]在后缀自动机上,从起始状态走 ...

  4. javascript中var、let和const的区别

    在javascript中,var.let和const都可以用来声明变量,那么三者有什么区别呢?要回答这个问题,我们可以从先想想:三种不同的声明会影响变量的哪些方面?这些方面也就是变量的特性,那么变量有 ...

  5. Spark 整合ElasticSearch

    Spark 整合ElasticSearch 因为做资料搜索用到了ElasticSearch,最近又了解一下 Spark ML,先来演示一个Spark 读取/写入 ElasticSearch 简单示例. ...

  6. js 图片压缩上传(纯js的质量压缩,非长宽压缩)

    下面是大神整理的demo,很实用,这里存一下备用,感谢大神! 此demo为大于1M对图片进行压缩上传 若小于1M则原图上传,可以根据自己实际需求更改. demo源码如下 <!DOCTYPE ht ...

  7. DataTabe使用Linq实现 Group

    DataTable dt = dataSet.Tables[]; var query = from t in dt.AsEnumerable() group t by new { t1 = t.Fie ...

  8. Mysql宽字节注入(转)

    尽管现在呼吁所有的程序都使用unicode编码,所有的网站都使用utf-8编码,来一个统一的国际规范.但仍然有很多,包括国内及国外(特别是非英语国家)的一些cms,仍然使用着自己国家的一套编码,比如g ...

  9. hashMap源码分析1--翻译

    * Hash table based implementation of the <tt>Map</tt> interface. This* implementation pr ...

  10. [C++]PAT乙级1009. 说反话 (17/20)

    /* 1009. 说反话 (20) 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式: 测试输入包含一个测试用例, 在一行内给出总长度不超过80的字符串. 字符串由若干单词和若干 ...